Background ESBL-producing Enterobacteriaceae (ESBL-E) are observed in many reservoirs. Pets might play an important role in the dissemination of ESBL-E to humans since they live closely together. Objectives To identify prevalence, risk factors, molecular characteristics, persistence and acquisition of ESBL-E in dogs and cats, and co-carriage in human–pet pairs belonging to the same household. Methods In a nationwide study, one person per household was randomly invited to complete a questionnaire and to submit a faecal sample. Dog and cat owners were invited to also submit a faecal sample from their pet. Repeated sampling after 1 and 6 months was performed in a subset. ESBL-E were obtained through selective culture and characterized by WGS. Logistic regression analyses and random forest models were performed to identify risk factors. Results The prevalence of ESBL-E carriage in these cohorts was 3.8% (95% CI: 2.7%–5.4%) for human participants (n=550), 10.7% (95% CI: 8.3%–13.7%) for dogs (n=555) and 1.4% (95% CI: 0.5%–3.8%) for cats (n=285). Among animals, blaCTX-M-1 was most abundant, followed by blaCTX-M-15. In dogs, persistence of carriage was 57.1% at 1 month and 42.9% at 6 months. Eating raw meat [OR: 8.8, 95% CI: 4.7–16.4; population attributable risk (PAR): 46.5%, 95% CI: 41.3%–49.3%] and dry food (OR: 0.2, 95% CI: 0.1–0.5; PAR: 56.5%, 95% CI: 33.2%–66.6%) were predictors for ESBL-E carriage in dogs. Human–dog co-carriage was demonstrated in five households. Human–cat co-carriage was not observed. Conclusions ESBL-E prevalence was higher in dogs than in humans and lowest in cats. The main risk factor for ESBL-E carriage was eating raw meat. Co-carriage in dogs and household members was uncommon.
BackgroundClose contact between pets and owners provides the opportunity for transmission of antimicrobial resistant organisms like extended-spectrum beta-lactamase (ESBL)/AmpC beta-lactamase (AmpC)-producing Enterobacteriaceae, posing a risk to public health.ObjectivesTo investigate whether raw feed is a risk factor for household cats to shed ESBL-producing Enterobacteriaceae, a cohort study was designed. Additionally, raw and non-raw commercial pet food products were screened for the presence of ESBL-producing Enterobacteriaceae.MethodsWeekly fecal samples of 17 cats in the control group and 19 cats in the exposed group were collected for three weeks and analyzed for the presence of ESBL-producing Enterobacteriaceae. Questionnaires were obtained to determine additional risk factors. Fecal samples were cultured on MacConkey agar supplemented with 1 mg/L cefotaxime. PCR and sequence analysis was used for screening for ESBL genes in suspected isolates. Pet food samples were cultured in LB broth supplemented with 1 mg/L cefotaxime and processed as described above.ResultsIn the cohort study, ESBL-producing bacteria were isolated from 3 of 51 (5.9%) samples in the control group compared to 37 of 57 (89.5%) samples in the exposed group. A significant association was found between ESBL shedding and feeding raw pet food products (OR = 31.5). No other risk factors were identified in this study. ESBL-producing Enterobacteriaceae were isolated from 14 of 18 (77.8%) raw pet food products and 0 of 35 non-raw pet food products.ConclusionsThis study shows a strong association between shedding of ESBL-producing bacteria in household cats and feeding raw pet food. Raw pet food was often contaminated with ESBL-producing Enterobacteriaceae.
BackgroundStaphylococcus aureus is a contagious, opportunistic pathogen that causes clinical or subclinical mastitis in dairy cattle. The genetic background and antimicrobial resistance of isolates from Ethiopian dairy farms has not been studied. Therefore, the aim of this study was to characterize S. aureus from Ethiopian hand milked dairy cows, by spa, MLST and virulence factor typing, and by assessment of antimicrobial susceptibility. A total of 79 S. aureus isolates from intramammary infections was studied. A PCR was used to detect lukM-lukF’ and pvl genes encoding the bovine and human associated bi-component leukocidins, and the toxic shock syndrome toxin gene-1 (tst). Antimicrobial susceptibility was determined using the broth microdilution method.ResultsTwenty different spa types were identified, most isolates were t042 (58%), and the closely related t15786 (11%). The proportion of isolates positive for lukM-lukF’, tst and pvl was low at 0.04, 0.10 and 0.09 respectively, with lukM-lukF’ often co-occurring with tst, but not with pvl. Methicillin-resistance was not found, but resistance to penicillin/ampicillin (86%) and tetracycline (54%) was very common.ConclusionsWe found a high degree of relatedness among bovine S. aureus isolates in North-Western Ethiopia, suggesting contagious within and between farm transmission of strains that are often resistant to commonly used antimicrobials. This highlights the need for effective preventive measures that aim at limiting transmission of bacteria rather than using antimicrobials to control S. aureus mastitis in Ethiopia.Electronic supplementary materialThe online version of this article (10.1186/s12917-018-1558-1) contains supplementary material, which is available to authorized users.
Staphylococcus aureus, a major cause of bovine mastitis, produces a wide range of immune-evasion molecules. The bi-component leukocidin LukMF’ is a potent killer of bovine neutrophils in vitro. Since the role of LukMF’ in development of bovine mastitis has not been studied in natural infections, we aimed to clarify whether presence of the lukM-lukF’ genes and production levels of LukMF’ are associated with clinical severity of the disease. Staphylococcus aureus was isolated from mastitis milk samples (38 clinical and 17 subclinical cases) from 33 different farms. The lukM-lukF’ genes were present in 96% of the isolates. Remarkably, 22% of the lukM-lukF’-positive S. aureus isolates displayed a 10-fold higher in vitro LukMF’ production than the average of the lower-producing ones. These high producing isolates were cultured significantly more frequently from clinical than subclinical mastitis cases. Also, the detection of LukM protein in milk samples was significantly associated with clinical mastitis and high production in vitro. The high producing LukMF’ strains all belonged to the same genetic lineage, spa-type t543. Analysis of their global toxin gene regulators revealed a point mutation in the Repressor of toxins (rot) gene which results in a non-functional start codon, preventing translation of rot. This mutation was only identified in high LukMF’ producing isolates and not in low LukMF’ producing isolates. Since rot suppresses the expression of various toxins including leukocidins, this mutation is a possible explanation for increased LukMF’ production. Identification of high LukMF’ producing strains is of clinical relevance and can potentially be used as a prognostic marker for severity of mastitis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.