This paper reports on the effective use of capillary self-alignment for low-cost and time-efficient assembly of heterogeneous foil components into a smart electronic identification label. Particularly, we demonstrate the accurate (better than 50 μm) alignment of cm-sized functional foil dies. We investigated the role played by the assembly liquid, by the size and the weight of assembling dies and by their initial offsets in the self-alignment performance. It was shown that there is a definite range of initial offsets allowing dies to align with high accuracy and within approximately the same time window, irrespective of their initial offset.
In this paper, we demonstrate a scalable and low-cost memory technology using a phase separated blend of a ferroelectric polymer and a semiconducting polymer as data storage medium on thin, flexible polyester foils of only 25 µm thickness. By sandwiching this polymer blend film between rows and columns of metal electrode lines where each intersection makes up one memory cell, we obtained 1 kbit cross bar arrays with bit densities of up to 10 kbit/cm 2 .
Abstract-We present a pick-and-place approach driven by capillarity for highly precise and cost-effective assembly of mesoscopic components onto structured substrates. Based on competing liquid bridges, the technology seamlessly combines programmable capillary grasping, handling and passive releasing with capillary self-alignment of components onto pre-patterned assembly sites. The performance of the capillary gripper is illustrated by comparing the measured lifting capillary forces with those predicted by a hydrostatic model of the liquid meniscus. Two component release strategies, based on either axial or shear capillary forces, are discussed and experimentally validated. The releaseand-assembly process developed for a continuously moving assembly substrate provides a roll-to-roll-compatible technology for high-resolution and high-throughput component assembly.
Integration of electronic functionalities into textiles adds to the value of textiles. It allows measuring, detecting, actuating and treating or communicating with a body or object. These added values can render the smart textiles very useful, fun, supporting, protecting or even lifesaving. It is, however, important for the comfort, acceptance and functionality to have integration of electronics as unobtrusive as possible. One elegant unobtrusive method of integration is to have circuitry included in the textile and mount components to this circuitry. Conducting yarns introduced by weaving, knitting or embroidery are attractive candidates to compose the circuitry as they do not disturb the textile nature of the system and are processable by the mentioned conventional textile technologies. In the case that these smart textiles are worn by humans under dynamic circumstances, the system is exposed to mechanical stress. In this paper we report the results of studies on the failure modes of Ag-coated nylon yarns, which are applied on textile carriers by means of stitching or soutache embroidery. The test methods varied in combinations of mechanical stress, such as shearing, bending and tension, and support to better understand the process of deterioration of the yarns when these are mechanically stressed. The delamination of the Ag coating from the yarns leads to unstable resistance values in non-static conditions. The mechanical forces, such as shearing, bending and tension, cause progressively more damage to the filaments of the yarns. This leads to a reduction of the electrical conductivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.