The development of stimuli-responsively degradable porous carriers for both controlled drug release and high biosafety is vitally important to their clinical translation, but still challenging at present. A new type of porphyrin-iron metal organic framework (Fe-MOF) nanocrystals is engineered here as acid-degradable drug carrier and hydrogen donor by the coordination between porphyrin and zero-valence Fe atom. Fe-MOF nanocrystals exhibit excellent acid-responsive degradation for H 2 generation and simultaneous release of the loaded drug for combined hydrogen-chemotherapy of cancer multidrug resistance (MDR) and metastasis and for local hydrogen eradication of the off-target induced toxic side effects of the drug to normal cells/tissues. Mechanistically, released H 2 assists chemotherapeutic drug to efficiently inhibit cancer metastasis by immunoactivating intratumoral M1-phenotype macrophages and consequently downregulating the expression of metastasis-related matrix metalloproteinase-2 (MMP-2) and can also downregulate the expressions of both P-glycoprotein (P-gp) protein and adenosine triphosphate (ATP) in MDR cancer cells to sensitize chemotherapeutic drug for enhanced damage to mitochondria and DNA. High anti-MDR/antimetastasis efficacies and high biocompatibility endow Fe-MOF nanocrystals and the Fe-MOF-based nanomedicine with high potential for clinical translation.
Ever since molecular hydrogen was first reported as a hydroxyl radical scavenger in 2007, the beneficial effect of hydrogen was documented in more than 170 disease models and human diseases including ischemia/reperfusion injury, metabolic syndrome, inflammation, and cancer. All these pathological damages are concomitant with overproduction of reactive oxygen species (ROS) where molecular hydrogen has been widely demonstrated as a selective antioxidant. Although it is difficult to construe the molecular mechanism of hydrogen’s biomedical effect, an increasing number of studies have been helping us draw the picture clearer with days passing by. In this review, we summarized the current knowledge on systemic and cellular modulation by hydrogen treatment. We discussed the antioxidative, anti-inflammatory, and anti-apoptosis effects of hydrogen, as well as its protection on mitochondria and the endoplasmic reticulum, regulation of intracellular signaling pathways, and balancing of the immune cell subtypes. We hope that this review will provide organized information that prompts further investigation for in-depth studies of hydrogen effect.
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide with increasing incidence consistent with obesity, type 2 diabetes and cardiovascular diseases. No approved medication was currently available for NAFLD treatment. Molecular hydrogen (H 2 ), an anti-oxidative, anti-inflammatory biomedical agent is proved to exhibit therapeutic and preventive effect in various diseases. The purpose of this study was to investigate the effect of hydrogen/oxygen inhalation on NAFLD subjects and explore the mechanism from the perspective of hepatocyte autophagy. We conducted a randomized, placebo-controlled clinical trial of 13-week hydrogen/oxygen inhalation (China Clinical Trial Registry [#ChiCTR-IIR-16009114]) including 43 subjects. We found that inhalation of hydrogen/oxygen improved serum lipid and liver enzymes. Significantly improved liver fat content detected by ultrasound and CT scans after hydrogen/oxygen inhalation was observed in moderatesevere cases. We also performed an animal experiment based on methionine and choline-deficient (MCD) diet-induced mice model to investigate effect of hydrogen on mouse NASH. Hydrogen/oxygen inhalation improved systemic inflammation and liver histology. Promoted autophagy was observed in mice inhaled hydrogen/oxygen and treatment with chloroquine blocked the beneficial effect of hydrogen. Moreover, molecular hydrogen inhibited lipid accumulation in AML-12 cells. Autophagy induced by palmitic acid (PA) incubation was further promoted by 20% hydrogen incubation.Addition of 3-methyladenine (3-MA) partially blocked the inhibitory effect of hydrogen on intracellular lipid accumulation. Collectively, hydrogen/oxygen inhalation alleviated NAFLD in moderate-severe patients. This protective effect of hydrogen was possibly by activating hepatic autophagy. How to cite this article: Tao G, Zhang G, Chen W, et al. A randomized, placebo-controlled clinical trial of hydrogen/ oxygen inhalation for non-alcoholic fatty liver disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.