Polymeric micelles, nanosized assemblies of amphiphilic polymers with a core–shell architecture, have been used as carriers for various therapeutic compounds. They have gained attention due to specific properties such as their capacity to solubilize poorly water-soluble drugs, biocompatibility, and the ability to accumulate in tumor via enhanced permeability and retention (EPR). Moreover, additional functionality can be provided to the micelles by a further modification. For example, micelle surface modification with targeting ligands allows a specific targeting and enhanced tumor accumulation. The introduction of stimuli-sensitive groups leads to the drug’s release in response to environment change. This review highlights the progress in the development of multifunctional polymeric micelles in the field of cancer therapy. This review will also cover some examples of multifunctional polymeric micelles that are applied for tumor imaging and theragnosis.
Recently, synthetic polymers have attracted great interest in the field of biomedical science. Among these, polyphosphazenes (PPZs) are regarded as one of the most promising materials, due to their structural flexibility and biodegradability compared to other materials. PPZs have been developed through numerous studies. In particular, multi-functionalized PPZs have been proven to be potential biomaterials in various forms, such as nanoparticles (NPs) and hydrogels, through the introduction of various functional groups. Thus, PPZs have been applied for the delivery of therapeutic molecules (low molecular weight drugs, genes and proteins), bioimaging, phototherapy, bone regeneration, dental liners, modifiers and medical devices. The main goal of the present review is to highlight the recent and the most notable existing PPZ-based biomaterials for aforementioned applications, with future perspectives in mind.
To date, cancer therapies largely consist of five pillars: surgery, radiation, chemotherapy, targeted therapy, and immunotherapy. Still, researchers are trying to innovate the current cancer therapies to pursue an ideal...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.