Recombinant human stem cell factor (SCF) is homologous with recombinant rat SCF (rrSCF) and is a ligand for c-kit. We determined the influence of SCF on hematopoiesis in vitro and in vivo in baboons. In vitro, SCF alone stimulated little growth of hematopoietic colony-forming cells from baboon marrow, but did increase the number of colonies formed in response to erythropoietin (Epo), interleukin-3 (IL-3), and granulocyte- macrophage colony-stimulating factor (GM-CSF). In vivo, SCF caused an increase in the peripheral blood of the number of erythrocytes, neutrophils, lymphocytes, monocytes, eosinophils, and basophils. In marrow, it caused an increase in marrow cellularity and in the absolute number of colony-forming unit-granulocyte-monocyte (CFU-GM) and burst- forming unit-erythroid (BFU-E) in marrow following infusion of SCF. The in vivo stimulation of multiple lymphohematopoietic lineages corroborates previous in vitro studies and suggests a potentially important clinical role for SCF.
CD34+ cells devoid of detectable mature and immature T and B lymphocytes, expressing the CD2, CD10, and CD20 antigens, were isolated from marrows of three pairs of sex-mismatched, mixed lymphocyte culture (MLC) nonreactive, sibling baboons. Reciprocal transplants were performed between members of each pair, using the sex chromosomes, identified by standard cytogenetic techniques, as markers of the transplanted cells. Five animals from these three pairs were transplanted with 0.6 to 2.1 x 10(6)/kg of isolated cryopreserved and/or fresh isolated cells that were greater than 95% to 97% CD34+. Before transplantation, animals were treated with either single (920 or 1,020 cGy) or split (700 cGy x 2) dose total body irradiation. All animals engrafted with donor cells, as demonstrated by cytogenetic analysis of bone marrow metaphase cells 4 weeks after transplantation, with days to white blood cell count (WBC) greater than 500 being 19 +/- 2, to WBC greater than 1,000 23 +/- 2, to absolute neutrophil count greater than 500 24 +/- 3, and to platelets greater than 20,000 30 +/- 7. Three animals died of infectious-related complications at 34, 42, and 109 days after transplantation with evidence of host and donor cells (mixed chimerism) in marrow. Two animals remain alive and healthy more than 545 and 455 days after transplantation with stable mixed chimerism in marrow and blood. For these two animals, cytogenetic analysis of granulocyte/macrophage and erythroid colonies derived from marrow precursors between weeks 25 and 42 posttransplant showed evidence of mixed chimerism. Cytogenetic studies of CD2+ T cells and CD20+ B cells isolated from blood of these two animals between weeks 21 and 51 posttransplant showed the presence of mixed chimerism in both lymphocyte populations. Thus, isolated allogeneic CD34+ marrow cells devoid of detectable mature and immature T and B lymphocytes can engraft and reconstitute stable long-term myelopoiesis and lymphopoiesis in lethally irradiated baboons. These results are consistent with the hypothesis that CD34+ marrow cells contain pluripotent hematopoietic stem cells capable of fully reconstituting lymphohematopoiesis in the transplanted host.
Recombinant human stem cell factor (rhSCF) and recombinant human granulocyte colony-stimulating factor (rhG-CSF) are synergistic in vitro in stimulating the proliferation of hematopoietic progenitor cells and their precursors. We examined the in vivo synergy of rhSCF with rhG-CSF for stimulating hematopoiesis in vivo in baboons. Administration of low-dose (LD) rhSCF (25 micrograms/kg) alone did not stimulate changes in circulating WBCs. In comparison, administration of LD rhSCF in combination with rhG-CSF at 10 micrograms/kg or 100 micrograms/kg stimulated increases in circulating WBCs of multiple types up to twofold higher than was stimulated by administration of the same dose of rhG-CSF alone. When the dose of rhG-CSF is increased to 250 micrograms/kg, the administration of LD rhSCF does not further increase the circulating WBC counts. Administration of LD rhSCF in combination with rhG-CSF also stimulated increased circulation of hematopoietic progenitors. LD rhSCF alone stimulated less of an increase in circulating progenitors, per milliliter of blood, than did administration of rhG-CSF alone at 100 micrograms/kg. Baboons administered LD rhSCF together with rhG-CSF at 10, 100, or 250 micrograms/kg had 3.5- to 16-fold higher numbers per milliliter of blood of progenitors cells of multiple types, including colony-forming units granulocyte/macrophage (CFU-GM), burst-forming unit-erythroid (BFU-E), and colony-forming and burst-forming units-megakaryocyte (CFU- MK and BFU-MK) compared with animals given the same dose of rhG-CSF without rhSCF, regardless of the rhG-CSF dose. The increased circulation of progenitor cells stimulated by the combination of rhSCF plus rhG-CSF was not necessarily directly related to the increase in WBCs, as this effect on peripheral blood progenitors was observed even at an rhG-CSF dose of 250 micrograms/kg, where coadministration of LD rhSCF did not further increase WBC counts. Administration of very-low- dose rhSCF (2.5 micrograms/kg) with rhG-CSF, 10 micrograms/kg, did not stimulate increases in circulating WBCs, but did increase the number of megakaryocyte progenitor cells in blood compared with rhG-CSF alone. LD rhSCF administered alone for 7 days before rhG-CSF did not result in increased levels of circulating WBCs or progenitors compared with rhG- CSF alone. Thus, the synergistic effects of rhSCF with rhG-CSF were both dose- and time-dependent. The doses of rhSCF used in these studies have been tolerated in vivo in humans.(ABSTRACT TRUNCATED AT 400 WORDS).
Recombinant human stem cell factor (SCF) is homologous with recombinant rat SCF (rrSCF) and is a ligand for c-kit. We determined the influence of SCF on hematopoiesis in vitro and in vivo in baboons. In vitro, SCF alone stimulated little growth of hematopoietic colony-forming cells from baboon marrow, but did increase the number of colonies formed in response to erythropoietin (Epo), interleukin-3 (IL-3), and granulocyte- macrophage colony-stimulating factor (GM-CSF). In vivo, SCF caused an increase in the peripheral blood of the number of erythrocytes, neutrophils, lymphocytes, monocytes, eosinophils, and basophils. In marrow, it caused an increase in marrow cellularity and in the absolute number of colony-forming unit-granulocyte-monocyte (CFU-GM) and burst- forming unit-erythroid (BFU-E) in marrow following infusion of SCF. The in vivo stimulation of multiple lymphohematopoietic lineages corroborates previous in vitro studies and suggests a potentially important clinical role for SCF.
Recombinant human stem cell factor (SCF), the ligand for c-kit, has been shown to stimulate increased numbers of hematopoietic progenitor cells of multiple types to circulate in the blood of baboons, but it was not known if the cells stimulated to circulate by SCF contained cells capable of engrafting and rescuing lethally irradiated baboons. Peripheral blood mononuclear cells (PBMNC) were collected by leukapheresis from four untreated control baboons and from three baboons on the 10th or 11th day of treatment with SCF (200 micrograms/kg/d). All animals were transplanted with 1.00 to 1.04 x 10(8)/kg of cryopreserved autologous PBMNC after treatment with a single dose of 1,020 cGy total body irradiation (TBI). Three animals were transplanted with PBMNC that had been collected during SCF treatment, 24 to 38 days after the last dose of SCF. Rapid trilineage engraftment was documented by bone marrow biopsy in all three. The mean time to a total white blood cell count (WBC) > or = 500/microL, WBC > or = 1,000/microL, and an absolute neutrophil count (ANC) > or = 500/microL was 15 +/- 3 (mean +/- SD), 19 +/- 1, and 19 +/- 2 days, respectively. Two animals remain alive with stable engraftment more than 180 and 245 days posttransplant. The third died of sepsis 32 days posttransplant with a hypercellular marrow showing trilineage engraftment. The surviving animals were transfusion independent by 10 and 59 days posttransplant. Four control animals were transplanted with PBMNC collected in the absence of SCF stimulation. One was treated for 11 days with SCF (200 micrograms/kg/d) after PBMNC were collected. This animal was transplanted 25 days after the last dose of SCF. None of the four control animals engrafted and they died 13, 16, 28, and 38 days posttransplant with marrow aplasia. Treatment with SCF stimulates the circulation of cells that engraft and rescue lethally irradiated baboons. The characteristics of the transplantable cells present in the circulation are now amenable to direct study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.