The preceding paper describes a new approach to the detection and assay of growth factors for developmentally early multipotent hemopoietic cells (Bartelmez et al., J. Cell. Physiol., 1985). This approach, involving measurement of the increase in the number of receptors for the mononuclear phagocyte specific hemopoietic growth factor (HGF), colony stimulating factor-1 (CSF-1), in cultures of developmentally early murine cells incubated with putative HGFs, has been used to define and assay hemopoietin-1. Hemopoietin-1 (Mr approximately 20,000) is found in the medium derived from serum-free cultures of cells of the human urinary bladder carcinoma line 5637. In contrast to both hemopoietin-2 and CSF-1, which also stimulate an increase in CSF-1 receptor numbers in cultures of developmentally early hemopoietic cells, hemopoietin-1 alone has no detectable effect. However, hemopoietin-1 exhibits dramatic synergism with CSF-1. In the presence of CSF-1, hemopoietin-1 stimulates the proliferation of developmentally earlier cells than those that respond to either CSF-1 alone or hemopoietin-2 alone or their combination. These cells proliferate for at least 3 days with no alteration of the average CSF-1 receptor density. However, by 5 days of incubation, the progeny of developmentally early hemopoietic cells that have proliferated in response to hemopoietin-1 + CSF-1 exhibit an approximately tenfold increase in the average CSF-1 receptor density per cell, which immediately precedes their differentiation to adherent mononuclear phagocytes. As hemopoietin-1 does not possess colony stimulating or burst promoting activities for murine bone marrow cells, but acts on multipotent hemopoietic cells, the analysis of the mechanism of its synergistic effects with HGFs such as CSF-1 are of special relevance to the regulation of early events in hemopoiesis.
A new approach, based on the occurrence of receptors for the mononuclear phagocyte lineage specific hemopoietic growth factor (HGF) colony stimulating factor-1 (CSF-1) on developmentally early multipotent cells, is utilized to detect and assay rapidly another HGF, hemopoietin-2. This method is also used to determine the relative maturity of hemopoietin-2 target cells, to investigate synergism between hemopoietin-2 and CSF-1, and to measure CSF-1 receptor levels on maturing cells. While the target cell specificities of hemopoietin-2 and CSF-1 overlap, hemopoietin-2 causes the appearance of developmentally earlier 125I-CSF-1 binding cells de novo in the absence of CSF-1. Increased CSF-1 receptor densities are observed on cells incubated with either HGF, consistent with acquisition of the capacity for increased expression of the receptor by mononuclear phagocyte progenitor cells just prior to their differentiation to adherent mononuclear phagocytes. Together, both HGFs have a synergistic effect on the generation of 125I-CSF-1 binding cells with elevated CSF-1 receptor densities. Preliminary characterization of hemopoietin-2 from medium conditioned by WEHI-3 cells indicates that it is very similar to, if not identical with, interleukin-3 (IL-3) and the HGF(s) acting on multipotential cells and cells giving rise to erythroid cells, granulocytes, mononuclear phagocytes, and megakaryocytes. Purified IL-3 was shown to possess hemopoietin-2 activity.
Recombinant human stem cell factor (SCF) is homologous with recombinant rat SCF (rrSCF) and is a ligand for c-kit. We determined the influence of SCF on hematopoiesis in vitro and in vivo in baboons. In vitro, SCF alone stimulated little growth of hematopoietic colony-forming cells from baboon marrow, but did increase the number of colonies formed in response to erythropoietin (Epo), interleukin-3 (IL-3), and granulocyte- macrophage colony-stimulating factor (GM-CSF). In vivo, SCF caused an increase in the peripheral blood of the number of erythrocytes, neutrophils, lymphocytes, monocytes, eosinophils, and basophils. In marrow, it caused an increase in marrow cellularity and in the absolute number of colony-forming unit-granulocyte-monocyte (CFU-GM) and burst- forming unit-erythroid (BFU-E) in marrow following infusion of SCF. The in vivo stimulation of multiple lymphohematopoietic lineages corroborates previous in vitro studies and suggests a potentially important clinical role for SCF.
CD34+ cells devoid of detectable mature and immature T and B lymphocytes, expressing the CD2, CD10, and CD20 antigens, were isolated from marrows of three pairs of sex-mismatched, mixed lymphocyte culture (MLC) nonreactive, sibling baboons. Reciprocal transplants were performed between members of each pair, using the sex chromosomes, identified by standard cytogenetic techniques, as markers of the transplanted cells. Five animals from these three pairs were transplanted with 0.6 to 2.1 x 10(6)/kg of isolated cryopreserved and/or fresh isolated cells that were greater than 95% to 97% CD34+. Before transplantation, animals were treated with either single (920 or 1,020 cGy) or split (700 cGy x 2) dose total body irradiation. All animals engrafted with donor cells, as demonstrated by cytogenetic analysis of bone marrow metaphase cells 4 weeks after transplantation, with days to white blood cell count (WBC) greater than 500 being 19 +/- 2, to WBC greater than 1,000 23 +/- 2, to absolute neutrophil count greater than 500 24 +/- 3, and to platelets greater than 20,000 30 +/- 7. Three animals died of infectious-related complications at 34, 42, and 109 days after transplantation with evidence of host and donor cells (mixed chimerism) in marrow. Two animals remain alive and healthy more than 545 and 455 days after transplantation with stable mixed chimerism in marrow and blood. For these two animals, cytogenetic analysis of granulocyte/macrophage and erythroid colonies derived from marrow precursors between weeks 25 and 42 posttransplant showed evidence of mixed chimerism. Cytogenetic studies of CD2+ T cells and CD20+ B cells isolated from blood of these two animals between weeks 21 and 51 posttransplant showed the presence of mixed chimerism in both lymphocyte populations. Thus, isolated allogeneic CD34+ marrow cells devoid of detectable mature and immature T and B lymphocytes can engraft and reconstitute stable long-term myelopoiesis and lymphopoiesis in lethally irradiated baboons. These results are consistent with the hypothesis that CD34+ marrow cells contain pluripotent hematopoietic stem cells capable of fully reconstituting lymphohematopoiesis in the transplanted host.
Hematopoiesis appears to be regulated, in part, by a balance between extracellular positive and negative growth signals. Transforming growth factor beta-1 (TGF-beta 1) has been shown to be a negative regulator of primitive hematopoietic cells. This study examined the direct effect of TGF-beta 1 on the proliferation and differentiation of long-term repopulating hematopoietic stem cells (LTR-HSC) in vitro. We previously reported a cell fractionation approach that includes the selection of low Hoescht 33342/low Rhodamine 123 (low Ho/Rh) cell fractions that are highly enriched for long-term repopulating cells (LTR-HSC) and also clone to a very high efficiency in the presence of stem cell factor (SCF) + interleukin-3 (IL-3) + IL-6: 90% to 100% of individually cultured low Ho/Rh cells formed high proliferative potential clones. This high cloning efficiency of an LTR-HSC enriched cell population enabled proliferation inhibition studies to be more easily interpreted. In this report, we show that the continuous presence of TGF-beta 1 directly inhibits the cell division of essentially all low Ho/Rh cells (in a dose-dependent manner) during their 0 to 5th cell division in vitro. Therefore, it follows that TGF-beta 1 must directly inhibit the proliferation of LTR-HSC contained within these low Ho/Rh cells. The time required for some low Ho/Rh cells to undergo their first cell division in vitro was also prolonged in the presence of TGF-beta 1. Furthermore, when low Ho/Rh cells were exposed to TFG-beta 1 for varying lengths of time before neutralization of the TGF-beta 1 by monoclonal antibody, the ability to form macroclones was markedly decreased after approximately 4 days of TGF-beta 1 exposure. In addition, 1 to 10 ng/mL of TGF-beta 1 resulted in a maintenance of high proliferative potential-colony-forming cell (HPP-CFC) during 8 days of culture compared with loss of HPP-CFC in cultures with no added TGF- beta 1. In conclusion, this study shows that TGF-beta 1 directly inhibits the initial stages of proliferation of LTR-HSC and appears to slow the differentiation of daughter cells of low Ho/Rh cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.