Purpose
The purpose of this study is to unearth the factors that influence tourists’ revisit intention. The proposed model of the study is grounded on using the theory of planned behaviour (TPB) and extending it with additional variables, i.e. satisfaction, destination image, perceived risk, service quality and perceived value.
Design/methodology/approach
This study adopted a cross-sectional approach to collect data. The data were collected by conducting a field survey questionnaire on 330 respondents and were analysed using partial least squares version 3.2.9.
Findings
The results show that perceived behavioural control, perceived value, destination image and satisfaction significantly affect visitors’ revisit intention. The influence of perceived value, perceived service quality and destination image on satisfaction is also confirmed. On the other hand, satisfaction is found to be a significant mediator between perceived service quality, destination image and perceived value.
Originality/value
The extended TPB model that includes perceived service quality, perceived value, perceived risk and satisfaction provided a model with a theoretical basis to explain tourist revisit intentions to a tourist destination.
In recent years, the growth of cryptocurrency has undergone an enormous increase in cryptocurrency markets all around the world. Sadly, only insignificant heed has been paid to the unveiling of determinants of cryptocurrency adoption globally, particularly in emerging markets like Malaysia. The purpose of the study is to examine whether the application of deep learning-based dual-stage Partial Least Square-Structural Equation Modelling (PLS-SEM) & Artificial Neural Network (ANN) analysis enable better in-depth research results as compared to single-step PLS-SEM approach and to excavate factors which can predict behavioural intention to adopt cryptocurrency. The Unified Theory of Acceptance and Use of Technology 2 (UTAUT2) model were extended with the inclusion of trust and personnel innovativeness. The model was further validated by introducing a new path model compared to the original UTAUT2 model and the moderating role of personal innovativeness between performance expectancy and price value, with a sample of 314 respondents. Contrary to previous technology adoption studies that used PLS-SEM & ANN as single-stage analysis, this study further enhanced the analysis by applying a deep learning-based dual-stage PLS-SEM and ANN method. The application of deep learning-based dual-stage PLS-SEM & ANN analysis is a novel methodological approach, detecting both linear and non-linear associations among constructs. At the same time, it is regarded as a superior statistical approach as compared to traditional hybrid shallow SEM & ANN single-stage analysis. Also, sensitivity analysis provides normalised importance using multi-layer perceptron with the feed-forward-back-propagation algorithm. Furthermore, the deep learning-based dual-stage PLS-SEM & ANN revealed that trust proved to be the strongest predictor in driving user intention. The introduction of this new methodology and the theoretical contribution opens the vistas of the extant body of knowledge in technology-adoption related literature. This study also provides theoretical, practical and methodological contributions.
In light of the growing role of social media marketing in the success of businesses and its low adoption rate among small and medium enterprises (SMEs), this study aims to identify determinants of SMEs’ social media marketing adoption by considering the competitive industry as a moderator. Data were collected from 214 SMEs in Malaysia. Unlike extant literature, this study proposed a dual-stage analysis involving partial least squares (PLS) technique and artificial intelligence named deep artificial neural network (ANN). The application of deep ANN architecture is used to predict 91% of accuracy for the proposed model. The results showed that perceived relative advantage, perceived cost, top management support, perceived competitor pressure, and perceived vendor pressure have a significant impact on social media marketing adoption. Furthermore, the competitive industry moderates the effects of competitive pressure and customer pressure on social media marketing adoption. The results of the study extend the literature on social media marketing by illustrating the influence of technological, organizational, and environmental (TOE) factors on social media marketing adoption among SMEs concerning the extent of industry competition. The results of the study enable policymakers and managers of SMEs to understand the factors that influence social media marketing adoption in both competitive and non-competitive industries and invest effectively in digital marketing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.