In recent years, the growth of cryptocurrency has undergone an enormous increase in cryptocurrency markets all around the world. Sadly, only insignificant heed has been paid to the unveiling of determinants of cryptocurrency adoption globally, particularly in emerging markets like Malaysia. The purpose of the study is to examine whether the application of deep learning-based dual-stage Partial Least Square-Structural Equation Modelling (PLS-SEM) & Artificial Neural Network (ANN) analysis enable better in-depth research results as compared to single-step PLS-SEM approach and to excavate factors which can predict behavioural intention to adopt cryptocurrency. The Unified Theory of Acceptance and Use of Technology 2 (UTAUT2) model were extended with the inclusion of trust and personnel innovativeness. The model was further validated by introducing a new path model compared to the original UTAUT2 model and the moderating role of personal innovativeness between performance expectancy and price value, with a sample of 314 respondents. Contrary to previous technology adoption studies that used PLS-SEM & ANN as single-stage analysis, this study further enhanced the analysis by applying a deep learning-based dual-stage PLS-SEM and ANN method. The application of deep learning-based dual-stage PLS-SEM & ANN analysis is a novel methodological approach, detecting both linear and non-linear associations among constructs. At the same time, it is regarded as a superior statistical approach as compared to traditional hybrid shallow SEM & ANN single-stage analysis. Also, sensitivity analysis provides normalised importance using multi-layer perceptron with the feed-forward-back-propagation algorithm. Furthermore, the deep learning-based dual-stage PLS-SEM & ANN revealed that trust proved to be the strongest predictor in driving user intention. The introduction of this new methodology and the theoretical contribution opens the vistas of the extant body of knowledge in technology-adoption related literature. This study also provides theoretical, practical and methodological contributions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.