Post-translational cleavage at the G protein-coupled receptor proteolytic site (GPS) has been demonstrated in many class B2 G protein-coupled receptors as well as other cell surface proteins such as polycystin-1. However, the mechanism of the GPS proteolysis has never been elucidated. Here we have characterized the cleavage of the human EMR2 receptor and identified the molecular mechanism of the proteolytic process at the GPS. Proteolysis at the highly conserved His-Leu2Ser 518 cleavage site can occur inside the endoplasmic reticulum compartment, resulting in two protein subunits that associate noncovalently as a heterodimer. Site-directed mutagenesis of the P ؉1 cleavage site (Ser 518) shows an absolute requirement of a Ser, Thr, or Cys residue for efficient proteolysis. Substitution of the P ؊2 His residue to other amino acids produces slow processing precursor proteins, which spontaneously hydrolyze in a defined cellfree system. Further biochemical characterization indicates that the GPS proteolysis is mediated by an autocatalytic intramolecular reaction similar to that employed by the N-terminal nucleophile hydrolases, which are known to activate themselves by self-catalyzed cisproteolysis. We propose here that the autoproteolytic cleavage of EMR2 represents a paradigm for the other GPS motif-containing proteins and suggest that these GPS proteins belong to a cell surface receptor subfamily of N-terminal nucleophile hydrolases.
Natural killer (NK) cells possess potent cytotoxic mechanisms that need to be tightly controlled. Here, we explored the regulation and function of GPR56/ADGRG1, an adhesion G protein-coupled receptor implicated in developmental processes and expressed distinctively in mature NK cells. Expression of GPR56 was triggered by Hobit (a homolog of Blimp-1 in T cells) and declined upon cell activation. Through studying NK cells from polymicrogyria patients with disease-causing mutations in ADGRG1, encoding GPR56, and NK-92 cells ectopically expressing the receptor, we found that GPR56 negatively regulates immediate effector functions, including production of inflammatory cytokines and cytolytic proteins, degranulation, and target cell killing. GPR56 pursues this activity by associating with the tetraspanin CD81. We conclude that GPR56 inhibits natural cytotoxicity of human NK cells.
A novel member of the EGF-TM7 family, mEMR4, was identified and characterized. The full-length mouse EMR4 cDNA encodes a predicted 689-amino acid protein containing two epidermal growth factor (EGF)-like modules, a mucin-like spacer domain, and a seventransmembrane domain with a cytoplasmic tail. Genetic mapping established that mEMR4 is localized in the distal region of mouse chromosome 17 in close proximity to another EGF-TM7 gene, F4/80 (Emr1). Similar to F4/80, mEMR4 is predominantly expressed on resident macrophages. However, a much lower expression level was also detected in thioglycollateelicited peritoneal neutrophils and bone marrowderived dendritic cells. The expression of mEMR4 is up-regulated following macrophage activation in Biogel and thioglycollate-elicited peritoneal macrophages. Similarly, mEMR4 is over-expressed in TNF-␣-treated resident peritoneal macrophages, whereas interleukin-4 and -10 dramatically reduce the expression. mEMR4 was found to undergo proteolytic processing within the extracellular stalk region resulting in two protein subunits associated noncovalently as a heterodimer. The proteolytic cleavage site was identified by N-terminal amino acid sequencing and located at the conserved GPCR (G protein-coupled receptor) proteolytic site in the extracellular region. Using multivalent biotinylated mEMR4-mFc fusion proteins as a probe, a putative cell surface ligand was identified on a B lymphoma cell line, A20, in a cell-binding assay. The mEMR4-ligand interaction is Ca 2؉ -independent and is mediated predominantly by the second EGF-like module. mEMR4 is the first EGF-TM7 receptor known to mediate the cellular interaction between myeloid cells and B cells.
fThe adhesion class G protein-coupled receptors (adhesion-GPCRs) play important roles in diverse biological processes ranging from immunoregulation to tissue polarity, angiogenesis, and brain development. These receptors are uniquely modified by selfcatalytic cleavage at a highly conserved GPCR proteolysis site (GPS) dissecting the receptor into an extracellular subunit (␣) and a seven-pass transmembrane subunit () with cellular adhesion and signaling functions, respectively. Using the myeloid cellrestricted EMR2 receptor as a paradigm, we exam the mechanistic relevance of the subunit interaction and demonstrate a critical role for GPS autoproteolysis in mediating receptor signaling and cell activation. Interestingly, two distinct receptor complexes are identified as a result of GPS proteolysis: one consisting of a noncovalent ␣- heterodimer and the other comprising two completely independent receptor subunits which distribute differentially in membrane raft microdomains. Finally, we show that receptor ligation induces subunit translocation and colocalization within lipid rafts, leading to receptor signaling and inflammatory cytokine production by macrophages. Our present data resolve earlier conflicting results and provide a new mechanism of receptor signaling, as well as providing a paradigm for signal transduction within the adhesion-GPCR family.T he adhesion-class G protein-coupled receptors (adhesion-GPCRs) constitute the second largest GPCR subfamily, whose 33 members are expressed restrictedly in cells of the central nervous, immune, and/or reproductive systems (2, 53). Adhesion-GPCRs are uniquely characterized by the chimeric composition of a large extracellular domain (ECD) and a seven-pass transmembrane (7TM) region. While the 7TM region is predicted to transduce cellular signals, the ECD of adhesion-GPCRs contains multiple repeats of protein modules such as the lectin-like, immunoglobulin (Ig)-like, epidermal growth factor (EGF)-like, and cadherinlike motifs known to mediate protein-protein interaction (2, 53). Adhesion-GPCRs are thus thought to possess a dual cellular adhesion and signaling function. Recent studies have revealed many important functions for adhesion-GPCRs: these include development of the brain frontal cortex (34), circulation of cerebrospinal fluid (44), central nervous system (CNS)-restricted angiogenesis and vascularization (1, 10, 21), myelination of Schwann cells (30, 31), Usher syndrome (29, 49), cellular polarity (16, 23), epididymal fluid regulation and male fertility (4, 12), and immune recognition and regulation (11,18,27,47), as well as tumor growth and metastasis (8,17,43,50). However, the molecular mechanisms mediating the biological functions of adhesion-GPCRs remain to be fully characterized.In addition to the large mosaic ECD, the complex pre-and posttranslational modifications that produce multiple receptor isoforms and the lack of defined ligands also present a great challenge in deciphering the molecular mechanisms of adhesion-GPCRs. Of note is the conserved prot...
a b s t r a c tAuto-proteolysis at the G protein-coupled receptor (GPCR) proteolytic site (GPS) is a hallmark of adhesion-GPCRs. Although defects in GPS auto-proteolysis have been linked to genetic disorders, information on its regulation remains elusive. Here, we investigated the GPS proteolysis of CD97, a human leukocyte-restricted and tumor-associated adhesion-GPCR. We found that CD97 is incompletely processed, unlike its close homolog, epidermal growth factor-like module-containing mucin-like hormone receptor 2. A unique pattern of N-glycosylation within the GPS motif of related adhesion-GPCRs was identified. The use of N-glycosylation inhibitors and mutants confirm site-specific N-glycosylation is an important determinant of GPS proteolysis in CD97. Our results suggest that N-glycosylation may regulate the processing of adhesion-GPCRs leading to the production of either cleaved or uncleaved molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.