Summary Atmospheric carbon dioxide concentration ([CO2]) is increasing, which increases leaf‐scale photosynthesis and intrinsic water‐use efficiency. These direct responses have the potential to increase plant growth, vegetation biomass, and soil organic matter; transferring carbon from the atmosphere into terrestrial ecosystems (a carbon sink). A substantial global terrestrial carbon sink would slow the rate of [CO2] increase and thus climate change. However, ecosystem CO2 responses are complex or confounded by concurrent changes in multiple agents of global change and evidence for a [CO2]‐driven terrestrial carbon sink can appear contradictory. Here we synthesize theory and broad, multidisciplinary evidence for the effects of increasing [CO2] (iCO2) on the global terrestrial carbon sink. Evidence suggests a substantial increase in global photosynthesis since pre‐industrial times. Established theory, supported by experiments, indicates that iCO2 is likely responsible for about half of the increase. Global carbon budgeting, atmospheric data, and forest inventories indicate a historical carbon sink, and these apparent iCO2 responses are high in comparison to experiments and predictions from theory. Plant mortality and soil carbon iCO2 responses are highly uncertain. In conclusion, a range of evidence supports a positive terrestrial carbon sink in response to iCO2, albeit with uncertain magnitude and strong suggestion of a role for additional agents of global change.
SummaryFor accurate interpretation of oxygen isotopes in tree rings (d 18 O), it is necessary to disentangle the mechanisms underlying the variations in the tree's internal water cycle and to understand the transfer of source versus leaf water d 18 O to phloem sugars and stem wood. We studied the seasonal transfer of oxygen isotopes from precipitation and soil water through the xylem, needles and phloem to the tree rings of Larix decidua at two alpine sites in the L€ otschental (Switzerland
The aim of our study was to identify interactions between the decomposition of aboveground litter and rhizosphere activity. The experimental approach combined the placement of labelled litter (delta13C=-37.9 per thousand ) with forest girdling in a 35-year-old Norway spruce stand, resulting in four different treatment combinations: GL (girdled, litter), GNL (girdled, no litter), NGL (not girdled, litter), and NGNL (not girdled, no litter). Monthly sampling of soil CO2 efflux and delta13C of soil respired CO2 between May and October 2002 allowed the partitioning of the flux into that derived from the labelled litter, and that derived from native soil organic matter and roots. The effect of forest girdling on soil CO2 efflux was detectable from June (girdling took place in April), and resulted in GNL fluxes to be about 50% of NGNL fluxes by late August. The presence of litter resulted in significantly increased fluxes for the first 2 months of the experiment, with significantly greater litter derived fluxes from non-girdled plots and a significant interaction between girdling and litter treatments over the same period. For NGL collars, the additional efflux was found to originate only in part from litter decomposition, but also from the decay of native soil organic matter. In GL collars, this priming effect was not significant, indicating an active role of the rhizosphere in soil priming. The results therefore indicate mutual positive feedbacks between litter decomposition and rhizosphere activity. Soil biological analysis (microbial and fungal biomass) of the organic layers indicated greatest activity below NGL collars, and we suppose that this increase indicates the mechanism of mutual positive feedback between rhizosphere activity and litter decomposition. However, elimination of fresh C input from both above- and belowground (GNL) also resulted in greater fungal abundance than for the NGNL treatment, indicating likely changes in fungal community structure (i.e. a shift from symbiotic to saprotrophic species abundance).
SummaryElevated CO 2 increases intrinsic water use efficiency (WUE i ) of forests, but the magnitude of this effect and its interaction with climate is still poorly understood.We combined tree ring analysis with isotope measurements at three Free Air CO 2 Enrichment (FACE, POP-EUROFACE, in Italy; Duke FACE in North Carolina and ORNL in Tennessee, USA) sites, to cover the entire life of the trees. We used d 13 C to assess carbon isotope discrimination and changes in water-use efficiency, while direct CO 2 effects on stomatal conductance were explored using d 18 O as a proxy. Across all the sites, elevated CO 2 increased 13 C-derived water-use efficiency on average by 73% for Liquidambar styraciflua, 77% for Pinus taeda and 75% for Populus sp., but through different ecophysiological mechanisms. Our findings provide a robust means of predicting water-use efficiency responses from a variety of tree species exposed to variable environmental conditions over time, and speciesspecific relationships that can help modelling elevated CO 2 and climate impacts on forest productivity, carbon and water balances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.