A well-defined insulating layer is of primary importance in the fabrication of passive (e.g. capacitors) and active (e.g. transistors) components in integrated circuits. One of the most widely known 2-Dimensional (2D) dielectric materials is hexagonal boron nitride (hBN).Solution-based techniques are cost-effective and allow simple methods to be used for device fabrication. In particular, inkjet printing is a low-cost, non-contact approach, which also allows for device design flexibility, produces no material wastage and offers compatibility with almost any surface of interest, including flexible substrates.In this work we use water-based and biocompatible graphene and hBN inks to fabricate all-2D material and inkjet-printed capacitors. We demonstrate an areal capacitance of 2.0 ± 0.3 nF cm -2 for a dielectric thickness of ~3 µm and negligible leakage currents, averaged across more than 100 devices. This gives rise to a derived dielectric constant of 6.1 ± 1.7. The inkjet printed hBN dielectric has a breakdown field of 1.9 ± 0.3 MV cm -1 . Fully printed capacitors with sub-µm hBN layer thicknesses have also been demonstrated. The capacitors are then exploited in two fully printed demonstrators: a resistor-capacitor (RC) low-pass filter and a graphene-based field effect transistor.
We consider an archetypal example of a low-dimensional stochastic web, arising in a 1D oscillator driven by a plane wave of a frequency equal or close to a multiple of the oscillator's natural frequency. We show that the web can be greatly enlarged by the introduction of a slow, very weak, modulation of the wave angle. Generalizations are discussed. An application to electron transport in a nanometre-scale semiconductor superlattice in electric and magnetic fields is suggested.
Inkjet printed graphene is in-depth investigated by means of Hall mobility measurements, low-temperature magnetoresistance analysis, and low frequency noise characterization.
We present a model for 1/f noise in graphene based on an analysis of the effect of charge trapping and detrapping events on the fluctuations of the number of charge carriers. Inclusion of a Gaussian distribution of fluctuations of the electrostatic potential enables us to reproduce all the various experimentally observed behaviors of the flicker noise power spectral density as a function of carrier density, both for monolayer and bilayer graphene. The key feature of a flicker noise minimum at the Dirac point that appears in bilayer graphene and sometimes also in monolayer graphene is explained in terms of the disappearance, when the number of electrons equals that of holes, of the carrier number fluctuations induced by trapping events. Such a disappearance is analyzed with two different approaches, in order to gain a better understanding of the physical origin of the effect, and to make some considerations about possible analogous phenomena in other semiconductors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.