B-cell responses are emerging as critical regulators of cancer progression. In this study, we investigated the role of B lymphocytes in the microenvironment of human pancreatic ductal adenocarcinoma (PDAC), in a retrospective consecutive series of 104 PDAC patients and in PDAC preclinical models. Immunohistochemical analysis revealed that B cells occupy two histologically distinct compartments in human PDAC, either scatteringly infiltrating (CD20-TILs), or organized in tertiary lymphoid tissue (CD20-TLT). Only when retained within TLT, high density of B cells predicted longer survival (median survival 16.9 mo CD20-TLT vs. 10.7 mo CD20-TLT; = 0.0085). Presence of B cells within TLT associated to a germinal center (GC) immune signature, correlated with CD8-TIL infiltration, and empowered their favorable prognostic value. Immunotherapeutic vaccination of spontaneously developing PDAC (Kras-Pdx1-Cre) mice with α-enolase (ENO1) induced formation of TLT with active GCs and correlated with increased recruitment of T lymphocytes, suggesting induction of TLT as a strategy to favor mobilization of immune cells in PDAC. In contrast, in an implanted tumor model devoid of TLT, depletion of B cells with an anti-CD20 antibody reinstated an antitumor immune response. Our results highlight B cells as an essential element of the microenvironment of PDAC and identify their spatial organization as a key regulator of their antitumor function. A mindfully evaluation of B cells in human PDAC could represent a powerful prognostic tool to identify patients with distinct clinical behaviors and responses to immunotherapeutic strategies.
Overall, our data highlight TAMs as critical determinants of prognostic responsiveness to CTX and provide clinical and in vitro evidence that CTX overall directly re-educates TAMs to restrain tumour progression. These results suggest that the quantification of TAMs could be exploited to select patients more likely to respond to CTX and provide the basis for novel strategies aimed at re-educating macrophages in the context of CTX.
The present study shows a direct association between metabolic parameters on FDG-PET and the expression of tumor-related immunity markers, suggesting a potential role for FDG-PET to characterize the tumor microenvironment and select NSCLC patients candidate to checkpoint inhibitors.
Apoptosis is characterized by profound morphological changes, but their physiological purpose is unknown. To characterize the role of apoptotic cell contraction, ROCK1 was rendered caspase non-cleavable (ROCK1nc) by mutating Aspartate 1113, which revealed that ROCK1 cleavage was necessary for forceful contraction and membrane blebbing. When homozygous ROCK1nc mice were treated with the liver-selective apoptotic stimulus of diethylnitrosamine, ROCK1nc mice had more profound liver damage with greater neutrophil infiltration than wild-type mice. Inhibition of the damage associated molecular pattern protein HMGB1 or signalling by its cognate receptor TLR4 lowered neutrophil infiltration and reduced liver damage. ROCK1nc mice also developed fewer diethylnitrosamine-induced hepatocellular carcinoma (HCC) tumours, while HMGB1 inhibition increased HCC tumour numbers. Thus, ROCK1 activation and consequent cell contraction are required to limit sterile inflammation and damage amplification following tissue-scale cell death. Additionally, these findings reveal a previously unappreciated role for acute sterile inflammation as an efficient tumour suppressive mechanism.
Recruitment of immune and inflammatory cells in the microenvironment of solid tumors is highly heterogeneous and follows patterns, varying according to the organ of origin and stage of disease, with critical roles in the process of cancer onset and progression. While adaptive cells are endowed with anti-tumor activities, inflammatory components of the immune infiltrate orchestrate an immunosuppressive microenvironment that reveals ambivalent functions of the immune contexture in the tumor milieu. The balance between opposing pro-tumoral and anti-tumoral immune pathways, which occur concomitantly in the tumor microenvironment, and the regulatory networks of these phenomena have been the target of several immunotherapeutic strategies. While the scarcity of adaptive immune effectors in tumors correlates with dismal prognosis, the pathways of activation of tumor-specific lymphocytes are yet to be fully elucidated. Recently, the occurrence of tertiary lymphoid tissue was revealed to be critical in mediating the dynamics of T cell recruitment and local activation of immune cells in the tumor microenvironment. Thus, tertiary lymphoid tissue assessment and targeting emerge as a promising approach for the design of novel prognostic immune signatures and immunotherapeutic strategies. The immunological behavior of tertiary lymphoid tissue, its occurrence in the tumor immune microenvironment and its clinical relevance are discussed here.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.