B-cell responses are emerging as critical regulators of cancer progression. In this study, we investigated the role of B lymphocytes in the microenvironment of human pancreatic ductal adenocarcinoma (PDAC), in a retrospective consecutive series of 104 PDAC patients and in PDAC preclinical models. Immunohistochemical analysis revealed that B cells occupy two histologically distinct compartments in human PDAC, either scatteringly infiltrating (CD20-TILs), or organized in tertiary lymphoid tissue (CD20-TLT). Only when retained within TLT, high density of B cells predicted longer survival (median survival 16.9 mo CD20-TLT vs. 10.7 mo CD20-TLT; = 0.0085). Presence of B cells within TLT associated to a germinal center (GC) immune signature, correlated with CD8-TIL infiltration, and empowered their favorable prognostic value. Immunotherapeutic vaccination of spontaneously developing PDAC (Kras-Pdx1-Cre) mice with α-enolase (ENO1) induced formation of TLT with active GCs and correlated with increased recruitment of T lymphocytes, suggesting induction of TLT as a strategy to favor mobilization of immune cells in PDAC. In contrast, in an implanted tumor model devoid of TLT, depletion of B cells with an anti-CD20 antibody reinstated an antitumor immune response. Our results highlight B cells as an essential element of the microenvironment of PDAC and identify their spatial organization as a key regulator of their antitumor function. A mindfully evaluation of B cells in human PDAC could represent a powerful prognostic tool to identify patients with distinct clinical behaviors and responses to immunotherapeutic strategies.
Tissue macrophages provide immune defense and contribute to establishment and maintenance of tissue homeostasis. Here we used constitutive and inducible mutagenesis to delete the nuclear transcription regulator methyl-CpG binding protein 2 (Mecp2) in defined tissue macrophages. Animals lacking the Rett syndrome-associated gene in macrophages did not show signs of neurodevelopmental disorder, but displayed spontaneous obesity, which could be linked to impaired brown adipose tissue (BAT) function. Specifically, mutagenesis of a BAT-resident CX3CR1+ macrophage subpopulation compromised homeostatic, though not acute cold-induced thermogenesis. Mechanistically, BAT malfunction of pre-obese mice harboring mutant macrophages was associated with decreased sympathetic innervation and local norepinephrine titers, resulting in reduced adipocyte expression of thermogenic factors. Mutant macrophages over-expressed PlexinA4, which might contribute to the phenotype by repulsion of Sema6A-expressing sympathetic axons. Collectively, we report a previously unappreciated homeostatic role of macrophages in the control of tissue innervation, disruption of which in BAT results in metabolic imbalance.
Overall, our data highlight TAMs as critical determinants of prognostic responsiveness to CTX and provide clinical and in vitro evidence that CTX overall directly re-educates TAMs to restrain tumour progression. These results suggest that the quantification of TAMs could be exploited to select patients more likely to respond to CTX and provide the basis for novel strategies aimed at re-educating macrophages in the context of CTX.
It has long been known that in vitro polarized macrophages differ in morphology. Stemming from a conventional immunohistology observation, we set out to test the hypothesis that morphology of tumor-associated macrophages (TAMs) in colorectal liver metastasis (CLM) represents a correlate of functional diversity with prognostic significance. Density and morphological metrics of TAMs were measured and correlated with clinicopathological variables. While density of TAMs did not correlate with survival of CLM patients, the cell area identified small (S-TAM) and large (L-TAM) macrophages that were associated with 5-yr disease-free survival rates of 27.8% and 0.2%, respectively (P < 0.0001). RNA sequencing of morphologically distinct macrophages identified LXR/RXR as the most enriched pathway in large macrophages, with up-regulation of genes involved in cholesterol metabolism, scavenger receptors, MERTK, and complement. In single-cell analysis of mononuclear phagocytes from CLM tissues, S-TAM and L-TAM signatures were differentially enriched in individual clusters. These results suggest that morphometric characterization can serve as a simple readout of TAM diversity with strong prognostic significance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.