Transforming growth factor beta (TGF-βs) are secreted from cells as latent complexes and the activity of TGF-βs is controlled predominantly through activation of these complexes. Tolerance to the fetal allograft is essential for pregnancy success; TGF-β1 and -β2 play important roles in regulating these processes. Pregnancy-specific β-glycoproteins (PSGs) are present in the maternal circulation at high concentration throughout pregnancy and have been proposed to have anti-inflammatory functions. We found that recombinant and native PSG1 activate TGF-β1 and TGF-β2 in vitro. Consistent with these findings, administration of PSG1 protected mice from DSS-induced colitis, reduced the secretion of pro-inflammatory cytokines and increased the number of T regulatory cells. The PSG1-mediated protection was greatly inhibited by the co-administration of neutralizing anti-TGF-β Ab. Our results indicate that proteins secreted by the placenta directly contribute to the generation of active TGF-β and identify PSG1 as one of the few known biological activators of TGF-β2.
Pregnancy-specific 1 glycoproteins (PSGs) are the most abundant fetal proteins in the maternal bloodstream in late pregnancy. They are secreted by the syncytiotrophoblast and are detected around day 14 postfertilization. There are 11 human PSG genes, which encode a family of proteins exhibiting significant conservation at the amino acid level. We and others have proposed that PSGs have an immune modulatory function. In addition, we recently postulated that they are proangiogenic due to their ability to induce the secretion of VEGF-A and the formation of tubes by endothelial cells. The cellular receptor(s) for human PSGs remain unknown. Therefore, we conducted these studies to identify the receptor for PSG1, the highest expressed member of the family. We show that removal of cell surface glycosaminoglycans (GAGs) by enzymatic or chemical treatment of cells or competition with heparin completely inhibited binding of PSG1. In addition, PSG1 did not bind to cells lacking heparan or chondroitin sulfate on their surface, and binding was restored upon transfection with all four syndecans and glypican-1. Importantly, the presence of GAGs on the surface of endothelial cells was required for the ability of PSG1 to induce tube formation. This finding indicates that the PSG1-GAG interaction mediates at least some of the PSG1 proposed functions.Pregnancy success requires that the maternal immune system does not attack the fetal trophoblast cells, which are in direct contact with maternal blood and express genes derived from both the mother and the father. In addition, during pregnancy major vascular adaptations are required to guarantee fetal growth and survival. These include uterine vessel dilation, remodeling of the maternal decidual arteries, and angiogenesis within the placenta villi, as reviewed in Ref.
Using models can improve a diagnosis of GC pre-operatively. A prediction of GC pre-operatively may allow surgeons to be better prepared for a difficult operation.
In primates and rodents, trophoblast cells synthesize and secrete into the maternal circulation a family of proteins known as pregnancy specific glycoproteins (PSG). The current study was undertaken to characterize the receptor for two members of the murine PSG family, PSG17 and PSG23. Binding of recombinant PSG17 and PSG23 to CHO-K1 and L929 cells and their derived mutants was performed to determine whether these proteins bound to cell surface proteoglycans. We also examined binding of these proteins to cells transfected with syndecans and glypican-1 by flow cytometry. The interaction with glycosaminoglycans was confirmed in solid phase assays. Our results show that PSG17 binds to CD9 and to cell surface proteoglycans while PSG23 binds only to the latter. We found that the amino acids involved in CD9 binding reside in the region of highest divergence between the N1-domains of murine PSGs. For both proteins, the N-terminal domain (designated as N1) is sufficient for binding to cells and the ability to bind cell surface proteoglycans is affected by the cell line employed to generate the recombinant proteins. We conclude that while substantially different at the amino acid level, some murine PSGs share with human PSG1 the ability to bind to cell surface proteoglycans and that at least one PSG binds to more than one type of molecule on the cell surface.
Older patients have distinct pre-, intra-, and postoperative characteristics. Their care is more imaging- and cost-intensive. CCY in this population is associated with higher risks, likely due to a combination of comorbidities and age-related worsened physiological status. Pathologic findings are significantly different relative to younger patients. While removing the effect of age, preoperative creatinine levels, blood loss, and history of previous operation predict postoperative complications. Quantifying these differences may help to inform management decisions for older patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.