This study aimed to verify a deep convolutional neural network (CNN) algorithm to detect intussusception in children using a human-annotated data set of plain abdominal X-rays from affected children. From January 2005 to August 2019, 1449 images were collected from plain abdominal X-rays of patients ≤ 6 years old who were diagnosed with intussusception while 9935 images were collected from patients without intussusception from three tertiary academic hospitals (A, B, and C data sets). Single Shot MultiBox Detector and ResNet were used for abdominal detection and intussusception classification, respectively. The diagnostic performance of the algorithm was analysed using internal and external validation tests. The internal test values after training with two hospital data sets were 0.946 to 0.971 for the area under the receiver operating characteristic curve (AUC), 0.927 to 0.952 for the highest accuracy, and 0.764 to 0.848 for the highest Youden index. The values from external test using the remaining data set were all lower (P-value < 0.001). The mean values of the internal test with all data sets were 0.935 and 0.743 for the AUC and Youden Index, respectively. Detection of intussusception by deep CNN and plain abdominal X-rays could aid in screening for intussusception in children.
The identification of abnormal findings manifested in retinal fundus images and diagnosis of ophthalmic diseases are essential to the management of potentially vision-threatening eye conditions. Recently, deep learning-based computer-aided diagnosis systems (CADs) have demonstrated their potential to reduce reading time and discrepancy amongst readers. However, the obscure reasoning of deep neural networks (DNNs) has been the leading cause to reluctance in its clinical use as CAD systems. Here, we present a novel architectural and algorithmic design of DNNs to comprehensively identify 15 abnormal retinal findings and diagnose 8 major ophthalmic diseases from macula-centered fundus images with the accuracy comparable to experts. We then define a notion of counterfactual attribution ratio (CAR) which luminates the system’s diagnostic reasoning, representing how each abnormal finding contributed to its diagnostic prediction. By using CAR, we show that both quantitative and qualitative interpretation and interactive adjustment of the CAD result can be achieved. A comparison of the model’s CAR with experts’ finding-disease diagnosis correlation confirms that the proposed model identifies the relationship between findings and diseases similarly as ophthalmologists do.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.