We present an overview of a mature, robust and general algorithm providing a single framework for the inversion of most electromagnetic and electrical data types and instrument geometries. The implementation mainly uses a 1D earth formulation for electromagnetics and magnetic resonance sounding (MRS) responses, while the geoelectric responses are both 1D and 2D and the sheet's response models a 3D conductive sheet in a conductive host with an overburden of varying thickness and resistivity. In all cases, the focus is placed on delivering full system forward modelling across all supported types of data. Our implementation is modular, meaning that the bulk of the algorithm is independent of data type, making it easy to add support for new types. Having implemented forward response routines and file I/O for a given data type provides access to a robust and general inversion engine. This engine includes support for mixed data types, arbitrary model parameter constraints, integration of prior information and calculation of both model parameter sensitivity analysis and depth of investigation. We present a review of our implementation and methodology and show four different examples illustrating the versatility of the algorithm. The first example is a laterally constrained joint inversion (LCI) of surface time domain induced polarisation (TDIP) data and borehole TDIP data. The second example shows a spatially constrained inversion (SCI) of airborne transient electromagnetic (AEM) data. The third example is an inversion and sensitivity analysis of MRS data, where the electrical structure is constrained with AEM data. The fourth example is an inversion of AEM data, where the model is described by a 3D sheet in a layered conductive host
Time-domain electromagnetic data are conveniently inverted by using smoothly varying 1D models with fixed vertical discretization. The vertical smoothness of the obtained models stems from the application of Occam-type regularization constraints, which are meant to address the ill-posedness of the problem. An important side effect of such regularization, however, is that horizontal layer boundaries can no longer be accurately reproduced as the model is required to be smooth. This issue can be overcome by inverting for fewer layers with variable thicknesses; nevertheless, to decide on a particular and constant number of layers for the parameterization of a large survey inversion can be equally problematic. Here, we present a focusing regularization technique to obtain the best of both methodologies. The new focusing approach allows for accurate reconstruction of resistivity distributions using a fixed vertical discretization while preserving the capability to reproduce horizontal boundaries. The formulation is flexible and can be coupled with traditional lateral/spatial smoothness constraints in order to resolve interfaces in stratified soils with no additional hypothesis about the number of layers. The method relies on minimizing the number of layers of non-vanishing resistivity gradient, instead of minimizing the norm of the model variation itself. This approach ensures that the results are consistent with the measured data while favouring, at the same time, the retrieval of horizontal abrupt changes. In addition, the focusing regularization can also be applied in the horizontal direction in order to promote the reconstruction of lateral boundaries such as faults. We present the theoretical framework of our regularization methodology and illustrate its capabilities by means of both synthetic and field data sets. We further demonstrate how the concept has been integrated in our existing spatially constrained inversion formalism and show its application to large-scale time-domain electromagnetic data inversions
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.