The performance of porous scaffolds for tissue engineering (TE) applications is evaluated, in general, in terms of porosity, pore size and distribution, and pore tortuosity. These descriptors are often confounding when they are applied to characterize transport phenomena within porous scaffolds. On the contrary, permeability is a more effective parameter in (1) estimating mass and species transport through the scaffold and (2) describing its topological features, thus allowing a better evaluation of the overall scaffold performance. However, the evaluation of TE scaffold permeability suffers of a lack of uniformity and standards in measurement and testing procedures which makes the comparison of results obtained in different laboratories unfeasible. In this review paper we summarize the most important features influencing TE scaffold permeability, linking them to the theoretical background. An overview of methods applied for TE scaffold permeability evaluation is given, presenting experimental test benches and computational methods applied (1) to integrate experimental measurements and (2) to support the TE scaffold design process. Both experimental and computational limitations in the permeability evaluation process are also discussed.
The intraperitoneal (IP) administration of chemotherapy is an alternative treatment for peritoneal carcinomatosis, allowing for higher intratumor concentrations of the cytotoxic agent compared to intravenous administration. Nevertheless, drug penetration depths are still limited to a few millimeters. It is thus necessary to better understand the limiting factors behind this poor penetration in order to improve IP chemotherapy delivery. By developing a threedimensional computational fluid dynamics (CFD) model for drug penetration in a tumor nodule, we investigated the impact of a number of key parameters on the drug transport and penetration depth during IP chemotherapy. Overall, smaller tumors showed better penetration than larger ones, which could be attributed to the lower IFP in smaller tumors. Furthermore, the model demonstrated large improvements in penetration depth by subjecting the tumor nodules to vascular normalization therapy, and illustrated the importance of the drug that is used for therapy. Explicitly modeling the necrotic core had a limited effect on the simulated penetration. Similarly, the penetration depth remained virtually constant when the Darcy permeability of the tissue changed. Our findings illustrate that the developed parametrical CFD model is a powerful tool providing more insight in the drug transport and penetration during IP chemotherapy.
Chitosan (CS) membranes obtained by electrospinning are potentially ideal substrates for soft tissue engineering as they combine the excellent biological properties of CS with the extracellular matrix (ECM)-like structure of nanofibrous mats. However, the high amount of acid solvents required to spun CS solutions interferes with the biocompatibility of CS fibres. To overcome this limitation, novel CS based solutions were investigated in this work. Low amount of acidic acid (0.5M) was used and dibasic sodium phosphate (DSP) was introduced as ionic crosslinker to improve nanofibres water stability and to neutralize the acidic pH of electrospun membranes after fibres soaking in biological fluids. Randomly oriented and aligned nanofibres (128±19nm and 140±41nm, respectively) were obtained through electrospinning process (voltage of 30kV, 30μL/min flow rate and temperature of 39°C) showing mechanical properties similar to those of soft tissues (Young Modulus lower than 40MPa in dry condition) and water stability until 7 days. C2C12 myoblast cell line was cultured on CS fibres showing that the aligned architecture of substrate induces cell orientation that can enhance skeletal muscle regeneration.
The results suggest that a quantitative and objective bone structural similarity score may be defined to help biomaterials scientists fabricate, and surgeons select, the graft or scaffold best mimicking the structure of a given bone tissue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.