Purpose: This review aims to introduce aptamers and the methods of its development to improve the sensitivity and selectivity to target bacteria. In this review, we have highlighted current developments and directions in the pathogen detection based on aptamers. Background: Aptamers, the specific nucleic acid sequences, can bind to targets with high affinity and specificity. Some of researches on the use of aptamers for the detection of pathogen have been reported in recent years. Aptamers have more applicability than antibodies for the development of pathogen detection using biosensor; such as easy to synthesis and labeling, lack of immunogenicity, and a low cost of production. However, only few reports on the development and use of aptamers for the detection of pathogen have been published. Review: Aptamers specific to pathogen are obtained by whole-cell systematic evolution of ligands by exponential enrichment (SELEX) process. SELEX process is composed of screening random oligonucleotide bound with target cells, multiple separation and amplification of nucleic acids, final identification of the best sequences. For improving those affinity and selectivity to target bacteria, optimization of multiple separating process to remove unbounded oligonucleotides from aptamer candidates and sorting process by flow cytometry are required.
Purpose: Porcine proliferative enteropathy (PPE), caused by the obligate intracellular bacterium Lawsonia intracellularis, is a widely distributed disease throughout the world causing substantial economic loss. In order to diagnose PPE rapidly, the rapid kit was developed and tested. Methods: In this study, a rapid kit was developed to screen the PPE rapidly at the pig farm. Also, occult blood test with fecal occult blood (FOB) kit was done for detecting the blood in pig feces which might be the evident of hemorrhagic PPE. For developing the kit, we tested fecal samples of PPE infected pigs diagnosed by polymerase chain reaction (PCR) method. Results: With the developed rapid kit, Lawsonia intracellularis was detected in high density emulsion of ileum. On the other hand, the test result of detecting Lawsonia in feces showed too high non-specific response. In addition, nevertheless the FOB test result showed that blood evident could be founded in pig feces, the diagnosing result was not fit to PCR test result, which shows blood in pig feces could be from not only hemorrhagic PPE but also many reasons. Conclusions: To deal with the PPE effectively, it will be better for farmers to screen the PPE in earlier stage with easy and rapid diagnosing tool on farm. This study found out that the rapid kit could detect the Lawsonia intracellularis and hemoglobin in pig feces. However, the non-specific response to negative samples of PPE was too high to use at a pig farm. Further research is needed for lowering the non-specific response with the rapid kit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.