This study was conducted to develop a simple, rapid, and accurate lateral flow immunoassay (LFIA) detection method for point-of-care diagnosis. The one-dot LFIA for aflatoxin B1 (AFB1) was based on the modified competitive binding format using competition between AFB1 and colloidal gold-AFB1-BSA conjugate for antibody binding sites in the test zone. A Smartphone-based reading system consisting of a Samsung Galaxy S2 Smartphone, a LFIA reader, and a Smartphone application for the image acquisition and data analysis. The detection limit of one-dot LFIA for AFB1 is 5 μg/kg. This method provided semi-quantitative analysis of AFB1 samples in the range of 5 to 1,000 μg/kg. Using combination of the one-dot LFIA and the Smartphone-based reading system, it is possible to conduct a more fast and accurate point-of-care diagnosis.
Whole-cell Systemic Evolution of Ligands by Exponential enrichment (SELEX) is the process by which aptamers specific to target cells are developed. Aptamers selected by whole-cell SELEX have high affinity and specificity for bacterial surface molecules and live bacterial targets. To identify DNA aptamers specific to Staphylococcus aureus, we applied our rapid whole-cell SELEX method to a single-stranded ssDNA library. To improve the specificity and selectivity of the aptamers, we designed, selected, and developed two categories of aptamers that were selected by two kinds of whole-cell SELEX, by mixing and combining FACS analysis and a counter-SELEX process. Using this approach, we have developed a biosensor system that employs a high affinity aptamer for detection of target bacteria. FAM-labeled aptamer sequences with high binding to S. aureus, as determined by fluorescence spectroscopic analysis, were identified, and aptamer A14, selected by the basic whole-cell SELEX using a once-off FACS analysis, and which had a high binding affinity and specificity, was chosen. The binding assay was evaluated using FACS analysis. Our study demonstrated the development of a set of whole-cell SELEX derived aptamers specific to S. aureus; this approach can be used in the identification of other bacteria.
A rapid and simple immuno-chromatographic assay was developed to detect aflatoxin B1 (AFB1). The assay was based on a modified competitive binding format using colloidal gold and polyclonal antibody (Pab) conjugates. The anti-AFB1 Pab was immobilized to a defined detection zone on a porous nitrocellulose membrane and colloidal gold particles were conjugated to AFB1-BSA which served as a detection reagent. The AFB1-containing sample was added to the membrane and allowed to move with AFB1-BSA-coated particles dried on the conjugation pad. The mixture was then passed along the porous membrane by capillary action past the Pab in the detection zone, which captured AFB1 or AFB1-BSA. AFB1 in the sample inhibits binding of AFB1-BSA conjugated gold particles to the Pab and prevents formation of a red color dot. In the absence of AFB1, AFB1-BSA conjugated gold particles bound to the Pab, give a red color within this detection zone. With this method, 10 μg/mL of AFB1 was detected in less than 10 min. The developed AFB1 assay also showed no cross reaction to Ochratoxin A (OTA).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.