P4 is a high-level language for programming protocol-independent packet processors. P4 works in conjunction with SDN control protocols like OpenFlow. In its current form, OpenFlow explicitly specifies protocol headers on which it operates. This set has grown from 12 to 41 fields in a few years, increasing the complexity of the specification while still not providing the flexibility to add new headers. In this paper we propose P4 as a strawman proposal for how Open-Flow should evolve in the future. We have three goals: (1) Reconfigurability in the field: Programmers should be able to change the way switches process packets once they are deployed.(2) Protocol independence: Switches should not be tied to any specific network protocols. (3) Target independence: Programmers should be able to describe packetprocessing functionality independently of the specifics of the underlying hardware. As an example, we describe how to use P4 to configure a switch to add a new hierarchical label.
SLICED PROGRAMMABLE NETWORKSOpenFlow [4] has been demonstrated as a way for researchers to run networking experiments in their production network. Last year, we demonstrated how an OpenFlow controller running on NOX [3] could move VMs seamlessly around an OpenFlow network [1]. While OpenFlow has potential [2] to open control of the network, only one researcher can innovate on the network at a time. What is required is a way to divide, or slice, network resources so that researchers and network administrators can use them in parallel. Network slicing implies that actions in one slice do not negatively affect other slices, even if they share the same underlying physical hardware. A common network slicing technique is VLANs. With VLANs, the administrator partitions the network by switch port and all traffic is mapped to a VLAN by input port or explicit tag. This coarse-grained type of network slicing complicates more interesting experiments such as IP mobility or wireless handover.Here, we demonstrate FlowVisor, a special purpose OpenFlow controller that allows multiple researchers to run experiments safely and independently on the same production OpenFlow network. To motivate FlowVisor's flexibility, we demonstrate four network slices running in parallel: one slice for the production network and three slices running experimental code (Figure 1). Our demonstration runs on real network hardware deployed on our production network 1 at Stanford and a wide-area test-bed with a mix of wired and wireless technologies.
All network devices must parse packet headers to decide how packets should be processed. A 64 × 10 Gb/s Ethernet switch must parse one billion packets per second to extract fields used in forwarding decisions. Although a necessary part of all switch hardware, very little has been written on parser design and the trade-offs between different designs. Is it better to design one fast parser, or several slow parsers? What is the cost of making the parser reconfigurable in the field? What design decisions most impact power and area?In this paper, we describe trade-offs in parser design, identify design principles for switch and router designers, and describe a parser generator that outputs synthesizable Verilog that is available for download. We show that i) packet parsers today occupy about 1-2% of the chip, and ii) while future packet parsers will need to be programmable, this only doubles the (already small) area needed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.