Background. Benign Acute Childhood Myositis (BACM) is a transient condition mainly affecting children of school-age characterized by muscle pain, typically localized to the calf muscle with symmetrical lower extremity pain and difficulty in walking. Usually the clinical picture is preceded by a viral infection including influenza, parainfluenza, rotavirus and mycoplasma. Methods. The case-series was conducted in 4 pediatric hospitals in Catania, Italy, over a 12-year observational period. Clinical examination, laboratory data, course, treatment, and complications of the affected children were extracted from electronic medical records of each hospital. Results. For the case-series, fifty children diagnosed with BACM were enrolled: the mean age of affected children was 5.35 years, 86% of were males and in 56% the affections occurred during the winter. In the affected children, the clinical picture was characterized by previous fever and/or symptoms of inflammation of the upper airways, and followed by pain in the lower extremities up to uncoordinated gait. In 17 cases the etiological agent was isolated. In all the children the muscular symptomatology had a good evolution with progressive marked reduction of pain and of the high level of CKemia. Neither clinical recurrences nor sequelae were reported. Conclusions. BACM shows to have in most of the cases a favorable evolution, a spontaneous remission of symptoms and a good prognosis. It is worthy a rapid and early diagnosis in order to avoid unnecessary diagnostic investigations and a careful follow up necessary to exclude persistence of symptoms or CK elevation.
Calcium (Ca2+) channel gene mutations play an important role in the pathogenesis of neurological episodic disorders like epilepsy. CACNA1A and CACNA1H genes are involved in the synthesis of calcium channels. Mutations in the α1A subunit of the P/Q type voltage-gated calcium channel gene (CACNA1A) located in 19p13.13, which encodes for the transmembrane pore-forming subunit of CAV2.1 voltage-dependent calcium channel, have been correlated to a large clinical spectrum of epilepsy such as idiopathic genetic epilepsy, early infantile epilepsy, and febrile seizures. Moreover, CACNA1A mutations have been demonstrated to be involved in spinocerebellar ataxia type 6, familiar hemiplegic migraine, episodic ataxia type 2, early-onset encephalopathy, and hemiconvulsion–hemiplegia epilepsy syndrome. This wide phenotype heterogeneity associated with CACNA1A mutations is correlated to different clinical and electrophysiological manifestations. CACNA1H gene, located in 16p13.3, encodes the α1H subunit of T-type calcium channel, expressing the transmembrane pore-forming subunit Cav3.2. Despite data still remain controversial, it has been identified as an important gene whose mutations seem strictly related to the pathogenesis of childhood absence epilepsy and other generalized epilepsies. The studied variants are mainly gain-of-function, hence responsible for an increase in neuronal susceptibility to seizures. CACNA1H mutations have also been associated with autism spectrum disorder and other behavior disorders. More recently, also amyotrophic lateral sclerosis has been related to CACNA1H alterations. The aim of this review, other than describe the CACNA1A and CACNA1H gene functions, is to identify mutations reported in literature and to analyze their possible correlations with specific epileptic disorders, purposing to guide an appropriate medical treatment recommendation.
Sodium channelopathies are among the most common single-gene causes of epilepsy and have been considered model disorders for the study of genetic epilepsies. Epilepsies due to SCN8A pathogenic variants can present with a broad range of phenotypes varying from a severe epileptic encephalopathy with multiple types of drug-resistant seizure to neurodevelopmental delay, mental retardation, and electroencephalogram (EEG) findings of multifocal spike and waves (mostly in the temporal/parietal/occipital areas). In rare cases, benign familial infantile seizures and developmental delay with/without ataxia have been reported. A first-level, specific SCN8A Sanger's sequencing, although available, is rarely performed because the clinical phenotype is not strictly characteristic and several overlaps with other genetic epilepsies may occur. Given its indistinctive phenotype, diagnosis is usually performed through a specific gene panel for epileptic encephalopathies, early epilepsies, or genetic epilepsy in general, or through whole exome sequencing (WES) and more rarely through whole genome sequencing (WGS). Mutations in SCN8A occur as an autosomal dominant trait. The great majority of individuals diagnosed with SCN8A epilepsy do not have an affected parent, because usually SCN8A patients do not reproduce, and mutations are inherited as a “de novo” trait. In rare cases, SCN8A mutations may be inherited in the setting of parental germline mosaicism. SCN8A-related epilepsies have not shown a clear genotype–phenotype correlation, the same variants have been described with different clinical expressivity and this could be due to other genetic factors or to interacting environmental factors. There is no standardized treatment for SCN8A-related epilepsy because of the rarity of the disease and the unavailability of specific, targeted drugs. Treatment is based mainly on antiepileptic drugs which include classic wide-spectrum drugs such as valproic acid, levetiracetam, and lamotrigine. Sodium-channel blockers (phenytoin, carbamazepine, oxcarbazepine, and lamotrigine) have shown appreciable results in terms of seizure reduction, in particular, in patients presenting gain-of-function mutations. Nowadays, new potentially transformative gene therapy treatment approaches are currently being explored, allowing in the next future, a precision-based treatment directed against the gene defect and protein alterations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.