This paper provides a review of the scientific literature concerned with adhesion and surface properties of cellulose and nanocellulose. Cellulose is the most abundant chemical compound on earth and its natural affinity for self-adhesion has long been recognized. The ease of adhesion that occurs in cellulose has contributed to its use in paper and other fiber-based composite materials. Cellulose adhesion, which has received considerable attention over the past half century, occurs over a practical length scale ranging from the nanoscale to millimeters. Adhesion theories that have been examined in the bonding of cellulose fibers include: mechanical interlocking, adsorption or wetting theory, diffusion theory, and the theory of weak boundary layers. Cellulose fibers on the nanoscale are prepared in four different ways: (1) bacterial cellulose nanofibers, (2) cellulose nanofibers by electrospinning, (3) microfibrillated cellulose plant cell fibers and (4) nanorods or cellulose whiskers. Structure and properties of nanocellulose that are important include: morphology, crystalline structure, surface properties, chemical and physical properties, and properties in liquid suspension. Cellulosic nanofibers present a very high surface area which makes the adhesion properties the most important parameter to control for nanocomposite applications. In this paper, we will focus on discussion of the adhesion and surface characteristics of cellulose nanofibers that impact its properties and application in nanomaterials. Koninklijke Brill NV, Leiden, 2008
Copper (Cu) was used in antiquity to prevent waterborne and food diseases because, as a broad-spectrum antimicrobial agent, it generates reactive oxygen species, ROS. New technologies incorporating Cu into low-cost biodegradable nanomaterials built on cellulose, known as cellulosic cupric nanoparticles or c-CuNPs, present novel approaches to deliver Cu in a controlled manner to control microbial growth. We challenged strains of Saccharomyces cerevisiae to soluble Cu and c-CuNPs to evaluate the potential of c-CuNPs as antifungal agents. Cells exposed to c-CuNPs demonstrated greater sensitivity to Cu than cells exposed to soluble Cu, although Cu-resistant strains were more tolerant than Cu-sensitive strains of c-CuNP exposure. At the same level of growth inhibition, 157 μM c-CuNP led to the same internal Cu levels as did 400 CuSO4, offering evidence for alternative mechanisms of toxicity, perhaps through β-arrestin dependent endocytosis, which was supported by flow cytometry and fluorescence microscopy of c-CuNPs distributed both on the cell surface and within the cytoplasm. Genes responsible for genetic variation to copper were mapped to the ZRT2 and the CUP1 loci. Through proteomic analyses, we found that the expression of other zinc (Zn) transporters increased in Cu-tolerant yeast compared to Cu-sensitive strains. Further, the addition of Zn at low levels increased the potency of c-CuNP to inhibit even the most Cu-tolerant yeast. Through unbiased systems biological approaches, we identified Zn as a critical component of yeast response to Cu and the addition of Zn increased potency of the c-CuNPs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.