Carbon rich hard mask underlayer (UL) material deposition has become inevitable process in all advanced lithography applications. UL processes which include chemical vapor deposition (CVD) and spin-on UL play a very important role for pattern transfer from patterned thin photoresist to the substrate. UL materials must satisfy several requirements, which have become more demanding with device shrinkage and increasing device complexity (FinFET, 3D integration). The most important properties of next generation UL materials are superior wiggle resistance, etch controllability, thermal resistance, planarization, and gap filling performance. In particular, planarization and gap fill properties of UL material for application on topo-patterned substrate are receiving much attention recently. CVD processes generally give better wiggle performance and thermal resistance, but poorer planarization and gap filling performance than spin-on UL processes. In addition, Cost of Ownership (CoO) of CVD process is higher than that of a spin-on UL process. Therefore spin-on organic hard mask (OHM) process has been investigated as an attractive alternative to CVD processing. In this paper, we focus on an investigation of key properties of spin-on UL materials for achieving good planarity and gap filling performance on topo-patterned substrate. Various material properties such as solution viscosity, glass transition temperature (Tg), and film shrinkage ratio were evaluated and correlations between these properties and planarization were discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.