Adipocyte differentiation involves the transcriptional activation of several genes in triglyceride metabolism, including the adipose P2 (aP2 or 422) gene that encodes the adipocyte lipid-binding protein ALBP. Within the mouse aP2 promoter region, the AE-1 sequence functions as either a positive or a negative element in the regulation of aP2 gene expression. The AE-1 sequence is the binding site for the positive murine (3T3) adipocyte factor C/EBP-alpha, several human preadipocyte factors, and a 3T3 preadipocyte factor(s) that has been implicated as a repressor of aP2 gene expression. Here we report the cloning of new complementary DNAs that encode the 3T3 preadipocyte factor (termed AEBP1) and demonstrate that AEBP1 expression is abolished during adipocyte differentiation. Furthermore, we show that an activity of a carboxypeptidase associated with AEBP1 is important in the transcriptional repression function of AEBP1. Thus AEBP1 might represent a new type of transcription factor that regulates transcription by cleavage of factors involved in transcription.
The molecular etiology of obesity predisposition is largely unknown. Here, we present evidence that genetic variation in TBC1D1 confers risk for severe obesity in females. We identified a coding variant (R125W) in TBC1D1 that segregated with the disease in 4p15-14-linked obesity pedigrees. In cases derived from pedigrees with the strongest linkage evidence, the variant was significantly associated with obesity (P=0.000007) and chromosomes carrying R125W accounted for the majority of the evidence that originally linked 4p15-14 with the disease. In addition, by selecting families that segregated R125W with obesity, we were able to generate highly significant linkage evidence for an obesity predisposition locus at 4q34-35. This result provides additional and confirming evidence that R125W affects obesity susceptibility, delimits the location of an obesity gene at 4q34-35 and identifies a gene/gene interaction that influences the risk for obesity predisposition. Finally, although the function of TBC1D1 is unknown, the protein is structurally similar to a known regulator of insulin-mediated Glut4 translocation.
We have identified a novel transcriptional repressor, AEBP2, that binds to a regulatory sequence (termed AE-1) located in the proximal promoter region of the aP2 gene that encodes the adipose fatty acid-binding protein. Sequence analysis of AEBP2 cDNA revealed that it encodes a protein containing three Gli-Krü ppel (Cys 2 -His 2 )-type zinc fingers. Northern blot analysis revealed two transcripts (4.5 and 3.5 kilobases) which were ubiquitously expressed in every mouse tissue examined. In co-transfection assays, AEBP2 repressed transcription from the homologous aP2 promoter containing multiple copies of the AE-1 sequence. Moreover, a chimeric construct encoding a fusion AEBP2 protein with the Gal4 DNA-binding domain was able to repress the transcriptional activity of a heterologous promoter containing the Gal4-binding sequence. The transcriptional repression function of AEBP2 was completely abolished when one of the conserved histidine residues and a flanking serine residue in the middle zinc finger were replaced with an arginine residue. The defective transcriptional repression function of the mutant derivative was due neither to lack of expression nor to a failure to localize to the nucleus. Moreover, both the wild-type and mutant derivative of either the histidinetagged recombinant AEBP2 proteins or the in vitro translated Gal4-AEBP2 fusion proteins were equally able to bind to the target DNA. These results suggest that a portion of the zinc finger structure may play a direct role in transcriptional repression function, but not in DNA binding.
The c-erbB-2/neu gene encodes a transmembrane protein of 185 kDa (p185) with tyrosine kinase activity and extensive sequence homology to epidermal growth factor receptor. Amplification and overexpression of the c-erbB-2/neu gene has been shown in certain human tumors and is postulated to be important in human carcinogenesis. High levels of expression of the c-erbB-2/neu gene have been reported in non-small-cell lung cancer (NSCLC) cell lines and primary tumors from the United States. Since geographical and cultural factors may contribute to the development of certain types of cancer, we examined p185 examined p185 expression in 120 tumors from Chinese patients with lung cancers of different cell types and used immunohistochemical staining to determine the extent and general significance of p185 expression in human primary lung cancer. Our results demonstrate that 58.8% of the NSCLCs expressed p185 and that expression of p185 was observed only in NSCLC and not in small-cell lung cancers. Thirty-three of 41 adenocarcinomas and 24 of 55 squamous cell carcinomas among the NSCLCs examined were found to express p185 at levels different from those of normal lung. For the squamous cell carcinomas, p185 expression was correlated with lymph node metastasis (P less than 0.01), but for the adenocarcinomas, it was not (P greater than 0.05). In addition, expression of p185 in NSCLC was significantly more frequent in patients in advanced clinical stages. Our findings indicate that p185 expression is a frequent event and a general phenomenon in NSCLC and is correlated with poor clinical prognostic indicators, suggesting that expression of p185 may be of potential prognostic importance in NSCLC.
A family of 16 genes encoding the mouse ribosomal protein S24 was identified, and four members from this family were cloned. A single expressed intron-containing S24 gene (termed mrpS24) and one pseudogene (mrpS24p) were completely sequenced and characterized. The mrpS24 gene has seven exons and six introns spanning over 5.1 x 10(3) nucleotides (nt). The cap site of S24 was mapped to a G residue four nt upstream of a polypyrimidine tract and 15 nt downstream of a TATA-like (TATGA) element. The 5' region (-325 to +33) of the mrpS24 gene has a functional promoter that was able to express the fused chloramphenicol acetyltransferase (CAT) reporter gene. Two different forms of mouse S24 cDNA clones were previously isolated. Sequence analysis showed that one of these cDNA clones (termed S24a) lacks the entire exon V sequence (18 nt), and the deduced amino acid sequence is missing a C-terminal lysine residue encoded by the other cDNA (S24b). The pseudogene mrpS24p is flanked by an 11-bp direct repeat, and its sequence is almost identical to the S24 cDNA sequence, but it lacks two mini-exons, V and VI (20 nt), as in the cases of the human and rat S24 cDNAs. RT-PCR experiments demonstrated the existence of a third form (S24c) that similarly lacks both of the mini-exons, and suggested that different species of S24 mRNA might arise from alternative splicing of the mini-exons V and VI. Northern blot analysis showed that S24 expression is down- and up-regulated during adipocyte differentiation and in cellular transformation, respectively. RNase protection assays and RT-PCR experiments suggested that these cell-specific changes of S24 mRNA levels are mainly due to fluctuations in S24c mRNA level. Our results provide the first indication that a ribosomal protein gene is regulated by alternative usage of two mini-exons in a cell-specific manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.