Medical research is developing an ever greater need for comprehensive high-quality data generation to realize the promises of personalized health care based on molecular biomarkers. The nucleic acid proximity-based methods proximity ligation and proximity extension assays have, with their dual reporters, shown potential to relieve the shortcomings of antibodies and their inherent cross-reactivity in multiplex protein quantification applications. The aim of the present study was to develop a robust 96-plex immunoassay based on the proximity extension assay (PEA) for improved high throughput detection of protein biomarkers. This was enabled by: (1) a modified design leading to a reduced number of pipetting steps compared to the existing PEA protocol, as well as improved intra-assay precision; (2) a new enzymatic system that uses a hyper-thermostabile enzyme, Pwo, for uniting the two probes allowing for room temperature addition of all reagents and improved the sensitivity; (3) introduction of an inter-plate control and a new normalization procedure leading to improved inter-assay precision (reproducibility). The multiplex proximity extension assay was found to perform well in complex samples, such as serum and plasma, and also in xenografted mice and resuspended dried blood spots, consuming only 1 µL sample per test. All-in-all, the development of the current multiplex technique is a step toward robust high throughput protein marker discovery and research.
The enzyme-linked immunospot (ELISPOT) assay has been proven to be an efficient and sensitive method for the enumeration of single cells secreting antibodies or cytokines. Here we have used this method to determine the number of interleukin-4 (IL-4)- and interferon-gamma (IFN-gamma)-producing cells in vitro secondary responses to tetanus toxoid (TT) and the mycobacterial antigen (purified protein derivative; PPD) or the mitogen phytohemagglutinin (PHA). PHA-induced IL-4 and IFN-gamma secretion was well correlated suggesting polyclonal activation of cells. This was not the case with the specific antigens, where PPD preferentially induced IFN-gamma- and very few IL-4-producing cells, while TT-induced both IL-4 and IFN-gamma. These differences are probably a reflection of the types of immunity the two antigens induce, mycobacteria preferentially inducing a cell-mediated T helper type 1 (Th 1) type of immunity, while immunity to tetanus is an antibody-dependent, Th 2 type of response. In individuals recently boosted with TT, a significant increase in both IL-4- and IFN-gamma-producing cells in response to TT was seen at day 7 after boost, followed by decline. This was in contrast to what was seen in response to PPD where an increase of IFN-gamma-producing cells after the TT boost at day 7 persisted for at least 14 days. These results suggest that after an in vivo boost both antigen-specific and nonspecific T cells are activated and that antigen-specific cells home to other organs and therefore may be difficult to demonstrate in the circulation. Our data show that the ELISPOT assay is a powerful tool for determining the frequency of cells secreting cytokines. The assay has several advantages over other assays since it is sensitive, measures the number of actually secreting cells, and avoids the problems of binding of cytokines to their cell-bound or soluble receptors.
Cerebral involvement in Plasmodium falciparum malaria is associated with sequestration of infected red blood cells and occlusion of cerebral vessels. Adhesion of infected erythrocytes along the vascular endothelium as well as binding of uninfected erythrocytes to cells infected with latestage asexual parasites (resetting) may be important in erythrocyte sequestration. We report that the recently discovered rosetting phenomenon shares characteristics with other human cell-cell interactions (heparin sensitivity, temperature independence, Ca2+/Mg2+ and pH dependence). Mono-and polyclonal antibodies specific for PfHRPl, a histidine-rich protein present in the membrane of P. falcparum-infected erythrocytes, disrupt rosettes but do not affect attachment of infected erythrocytes to endothelial cells. The inhibitory anti-PfHRP1 antibodies reacted with rosetting parasites in indiect inmunofluorescence and with P. faicqarum polypeptides of Mr 28,000 and Mr 90,000 in immunoprecipitation and immunoblotting, respectively. No inhibitory effects on erythrocyte resetting were obtained with antibodies to related histidine-rich or other antigens of P. lophurae or P. falciparum. Whether the epitope that-mediates resetting, and is recognized by the anti-PfflRPl antibodies, is located on PfHRP1 or on a crossreactive antigen remains to be established. The results suggest that endothelial cytoadherence -and erythrocyte resetting involve different molecular mechanims.
A new diagnostic approach testing tissue samples derived from cattle ear tagging for bovine viral diarrhoea virus (BVDV) antigen in a commercially available antigen capture enzyme-linked immunosorbent assay (ACE) was developed. To validate this method, 99 positive and 469 negative samples were tested. With those samples the assay yielded a sensitivity of 100% and specificity of >or=99.6%. Serum and ear tissue samples from 11 persistently infected (PI) BVDV calves were tested. While serum samples were negative after intake of colostrum, the ear tissue samples could be detected positive for BVDV all the time. Testing multiple samples derived from the same ear from PI cattle yielded positive results and low variation. Using cattle ear tags combining the ear tag application with sampling of a small ear tissue plug and testing those tissue samples with an ACE could be a reliable and economic way of BVDV testing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.