Immature monocyte-derived dendritic cells (DC) strongly express the endocytic mannose receptor (MR). Addition of a specific anti-MR mAb (clone PAM-1) for 24 h to cultures of immature DC induced phenotypical and functional maturation of the cells, assessed as up-regulation of costimulatory molecules and CD83, and chemotactic response to CCL19. A different isotype-matched anti-MR mAb (clone 19.2) had no significant effect. Engagement of MR with mAb PAM-1 induced the production of the anti-inflammatory cytokines IL-10, IL-1R antagonist, and of the nonsignaling IL-1R type II. In contrast IL-1β, TNF, and IL-12 were not produced. PAM-1-treated DC were unable to polarize Th1 effector cells and did not secrete the chemokines CXCL10 and CCL19; in turn, they produced large amounts of CCL22 and CCL17, thus favoring the amplification of Th2 circuits. T cells cocultured with PAM-1-matured DC initially proliferated but later became anergic and behaved as suppressor/regulatory cells. Natural ligands binding to MR had differential effects. MUC III (a partially purified mucin), biglycan (a purified complex proteoglycan), and mannosylated lipoarabinomannan from Mycobacterium tuberculosis affected cytokine production with high IL-10, IL-1R antagonist, IL-1R type II, and inhibition of IL-12. In contrast, mannan, dextran, and thyroglobulin had no significant effect. In conclusion, the appropriate engagement of the MR by mAb PAM-1 and selected natural ligands elicit a secretory program in mono-derived DC characterized by a distinct profile of cytokines/chemokines with the ability to dampen inflammation and to inhibit the generation of Th1-polarized immune responses.
Tumor-Associated Macrophages (TAMs) are abundantly present in the stroma of solid tumors and modulate several important biological processes, such as neoangiogenesis, cancer cell proliferation and invasion, and suppression of adaptive immune responses. Myeloid C-type lectin receptors (CLRs) constitute a large family of transmembrane carbohydrate-binding receptors that recognize pathogens as well as endogenous glycoproteins. Several lines of evidence demonstrate that some CLRs can inhibit the immune response. In this study we investigated TAM-associated molecules potentially involved in their immune suppressive activity. We found that TAMs isolated from human ovarian carcinoma samples predominantly express the CLRs Dectin-1, MDL-1, MGL, DCIR, and most abundantly the Mannose Receptor (MR). Components of carcinomatous ascites and purified tumoral mucins (CA125 and TAG-72) bound the MR and induced its internalization. MR engagement by tumoral mucins and by an agonist anti-MR antibody modulated cytokine production by TAM toward an immune-suppressive profile: increase of IL-10, absence of IL-12, and decrease of the Th1-attracting chemokine CCL3. This study highlights that tumoral mucin-mediated ligation of the MR on infiltrating TAM may contribute to their immune suppressive phenotype.
During pregnancy, a delicate balance of innate and adaptive immune responses at the maternal-fetal interface promotes survival of the semi-allogeneic embryo and, at the same time, allows effective immunity to protect the mother from environmental pathogens. As in other tissues, antigen handling and processing in the decidualized endometrium constitutes a primary event in the onset of immune responses and is therefore likely to determine their stimulatory or tolerogenic nature. Maternal antigen-presenting cells [macrophages and dendritic cells (DCs)] are scattered throughout the decidualized endometrium during all stages of pregnancy and appear to be important players in this feto-maternal immune adjustment. This review focuses on the characterization of decidual macrophages and DCs, as well as their involvement in cell-cell interactions within the decidual leukocyte network, which are likely to influence uterine and placental homeostasis as well as the local maternal immune responses to the fetus during pregnancy.
Infections are leading causes of increased morbidity and mortality of severe traumatic brain‐injured (STBI) patients. The mechanism underlying the susceptibility to the infections is still unexplained. The purpose of the study was to investigate changes in frequency of leucocytes subpopulations in peripheral blood of patients with STBI during the course of intensive care treatment. Twenty patients with STBI were included in the study. Healthy age‐ and sex‐ volunteers served as control. Peripheral blood samples were taken from these patients at day 1, 4 and 7, and peripheral blood mononuclear cells (PBMC) were isolated. The percentage of T, B lymphocyte, NK and NKT cells as well as monocytes was analysed by simultaneous detection of surface antigens using fluorochrome‐conjugated monoclonal antibodies. The two major subsets of T lymphocytes (CD3+CD56−CD4+ and CD3+CD56−CD8+) and NK cells (CD3−CD56+dim and CD3−CD56+bright) were also analysed by flow cytometry. Extracranial infections were presented in 55% patients with STBI. At day 4, the percentage of T lymphocytes with cytotoxic phenotype significantly diminished and their numbers restored at day 7. The frequency of NKT cells showed the identical time‐dependent pattern, whereas the percentage of NK cells diminished on day 4 but did not restore after 7 days. The frequency of B lymphocytes did not change significantly during the time investigated, whereas the percentage of monocytes increased immediately after the injury and gradually diminished. The decrease in cells with cytotoxic phenotype might explain high incidence of susceptibility to infection of patients with STBI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.