Derivatives of 3-chlorobenzo[b]thiophene-2-carboxanilides and their "cyclic" analogues benzo[b]thieno[2,3-c]quinolones were synthesized. Spectroscopic study of the interactions of some representatives of "cyclic" derivatives and their "acyclic" precursors with ds-DNA/RNA supported strong intercalative binding of the former and weak nonintercalative binding of the latter group of compounds. All tested compounds showed a certain antiproliferative effect on a series of human tumor cells and on a normal cell line. Among the compounds, those with one amidino-substituent have shown the best effect. The most active benzo[b]thieno[2,3-c]quinolones induced apparent S and G2/M arrests of the cell cycle, which resulted in apoptosis. These results strongly suggest that the compounds may act as topoisimerase "poisons", which is in good agreement with their intercalative mode of binding to ds-DNA/RNA, in contrast to the studied "acyclic"group of derivatives. 6a and 6d showed the best selectivity by inhibiting the growth of tumor cells but not of normal fibroblasts.
Synthesis of a series of novel cyano- and amidinobenzothiazole derivatives 3-31 is described. All studied amidino derivatives showed noticeable antiproliferative effect on several tumor cell lines. Cyano derivatives 11-17 showed considerably less pronounced activity because of their poor solubility in aqueous cell culture medium, which was confirmed by the principal components (PC) analysis. Compounds 21, 22, 28, and 29 were tested for their effects on the cell cycle and apoptosis, whereby 22 and 29, having methyl group at the C-6 position in pyridine ring, showed drastic cell cycle perturbations that were both concentration- and time-dependent and induced apoptosis. The QSAR modeling, based on the physicochemical descriptors and on the measured biological activities, indicated the relevance of molecular polarizability and particular distribution of pharmacophores on the molecular surface for activity. In conclusion, benzothiazoles containing either isopropylamidino or imidazolyl groups will be considered as starting compounds for further investigation on lead identification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.