Plant type ferredoxin (Fd) is a small [2Fe-2S] cluster containing electron-transfer protein with a highly negative redox potential. Higher plants contain different iso-protein types of Fd in roots and leaves, reflecting the difference in redox cascades between these two tissues. We have combined subdomains of leaf and root Fds in recombinant chimeras, to examine structural effects and the relationship between groups of residues on redox potential, electron transfer, and protein-protein interactions. All chimeras had redox potentials that were intermediate to the wild type leaf and root Fds. Surprisingly, the largest differences resulted from exchange of the N-terminus, the region farthest from the redox center. Homology modeling and energy minimization calculations suggest that the N-terminal chimeras may indirectly influence redox potentials by structurally perturbing the active site. Measurements of electron transport and protein interaction indicate that synergistic interaction between the C- and N-terminal of root Fd bestows a specific high affinity for accepting electrons in the root type electron cascade, and that there is discrimination against photosynthetic electron donation to root Fd based on the C-terminus of the molecule. Taken together, the experimental and computational studies support a model in which higher order structure contributes to iso-protein specific interaction and electron-transfer properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.