A continual learning agent learns online with a non-stationary and never-ending stream of data. The key to such learning process is to overcome the catastrophic forgetting of previously seen data, which is a well known problem of neural networks. To prevent forgetting, a replay buffer is usually employed to store the previous data for the purpose of rehearsal. Previous works often depend on task boundary and i.i.d. assumptions to properly select samples for the replay buffer. In this work, we formulate sample selection as a constraint reduction problem based on the constrained optimization view of continual learning. The goal is to select a fixed subset of constraints that best approximate the feasible region defined by the original constraints. We show that it is equivalent to maximizing the diversity of samples in the replay buffer with parameters gradient as the feature. We further develop a greedy alternative that is cheap and efficient. The advantage of the proposed method is demonstrated by comparing to other alternatives under the continual learning setting. Further comparisons are made against state of the art methods that rely on task boundaries which show comparable or even better results for our method.
PEPit is a python package aiming at simplifying the access to worst-case analyses of a large family of first-order optimization methods possibly involving gradient, projection, proximal, or linear optimization oracles, along with their approximate, or Bregman variants.In short, PEPit is a package enabling computer-assisted worst-case analyses of firstorder optimization methods. The key underlying idea is to cast the problem of performing a worst-case analysis, often referred to as a performance estimation problem (PEP), as a semidefinite program (SDP) which can be solved numerically. For doing that, the package users are only required to write first-order methods nearly as they would have implemented them. The package then takes care of the SDP modelling parts, and the worst-case analysis is performed numerically via a standard solver.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.