PEPit is a python package aiming at simplifying the access to worst-case analyses of a large family of first-order optimization methods possibly involving gradient, projection, proximal, or linear optimization oracles, along with their approximate, or Bregman variants.In short, PEPit is a package enabling computer-assisted worst-case analyses of firstorder optimization methods. The key underlying idea is to cast the problem of performing a worst-case analysis, often referred to as a performance estimation problem (PEP), as a semidefinite program (SDP) which can be solved numerically. For doing that, the package users are only required to write first-order methods nearly as they would have implemented them. The package then takes care of the SDP modelling parts, and the worst-case analysis is performed numerically via a standard solver.
First-order methods are often analyzed via their continuous-time models, where their worst-case convergence properties are usually approached via Lyapunov functions. In this work, we provide a systematic and principled approach to find and verify Lyapunov functions for classes of ordinary and stochastic differential equations. More precisely, we extend the performance estimation framework, originally proposed by Drori and Teboulle [9], to continuous-time models. We retrieve convergence results comparable to those of discrete methods using fewer assumptions and convexity inequalities, and provide new results for stochastic accelerated gradient flows.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.