We investigate the problem of fair recommendation in the context of two-sided online platforms, comprising customers on one side and producers on the other. Traditionally, recommendation services in these platforms have focused on maximizing customer satisfaction by tailoring the results according to the personalized preferences of individual customers. However, our investigation reveals that such customer-centric design may lead to unfair distribution of exposure among the producers, which may adversely impact their well-being. On the other hand, a producer-centric design might become unfair to the customers. Thus, we consider fairness issues that span both customers and producers. Our approach involves a novel mapping of the fair recommendation problem to a constrained version of the problem of fairly allocating indivisible goods. Our proposed FairRec algorithm guarantees at least Maximin Share (MMS) of exposure for most of the producers and Envy-Free up to One item (EF1) fairness for every customer. Extensive evaluations over multiple real-world datasets show the effectiveness of FairRec in ensuring two-sided fairness while incurring a marginal loss in the overall recommendation quality. CCS CONCEPTS• Information systems → Recommender systems.
Major online platforms today can be thought of as two-sided markets with producers and customers of goods and services. There have been concerns that over-emphasis on customer satisfaction by the platforms may affect the well-being of the producers. To counter such issues, few recent works have attempted to incorporate fairness for the producers. However, these studies have overlooked an important issue in such platforms -- to supposedly improve customer utility, the underlying algorithms are frequently updated, causing abrupt changes in the exposure of producers. In this work, we focus on the fairness issues arising out of such frequent updates, and argue for incremental updates of the platform algorithms so that the producers have enough time to adjust (both logistically and mentally) to the change. However, naive incremental updates may become unfair to the customers. Thus focusing on recommendations deployed on two-sided platforms, we formulate an ILP based online optimization to deploy changes incrementally in η steps, where we can ensure smooth transition of the exposure of items while guaranteeing a minimum utility for every customer. Evaluations over multiple real world datasets show that our proposed mechanism for platform updates can be efficient and fair to both the producers and the customers in two-sided platforms.
Many online platforms today (such as Amazon, Netflix, Spotify, LinkedIn, and AirBnB) can be thought of as two-sided markets with producers and customers of goods and services. Traditionally, recommendation services in these platforms have focused on maximizing customer satisfaction by tailoring the results according to the personalized preferences of individual customers. However, our investigation reinforces the fact that such customer-centric design of these services may lead to unfair distribution of exposure to the producers, which may adversely impact their well-being. However, a pure producer-centric design might become unfair to the customers. As more and more people are depending on such platforms to earn a living, it is important to ensure fairness to both producers and customers. In this work, by mapping a fair personalized recommendation problem to a constrained version of the problem of fairly allocating indivisible goods, we propose to provide fairness guarantees for both sides. Formally, our proposed FairRec algorithm guarantees Maxi-Min Share of exposure for the producers, and Envy-Free up to One Item fairness for the customers. Extensive evaluations over multiple real-world datasets show the effectiveness of FairRec in ensuring two-sided fairness while incurring a marginal loss in overall recommendation quality. Finally, we present a modification of FairRec (named as FairRecPlus ) that at the cost of additional computation time, improves the recommendation performance for the customers, while maintaining the same fairness guarantees.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.