This work considers the problem of avoiding obstacles for general nonlinear systems subject to disturbances. Obstacle avoidance is achieved by computing disturbance invariant sets along a nominal trajectory and ensuring these invariant sets do not intersect with obstacles. We develop a novel technique to compute approximate disturbance invariant sets for general nonlinear systems using a set of finite dimensional optimizations. A bi-level NMPC optimization strategy alternates between optimizing over the nominal trajectory and finding the disturbance invariant sets. Simulation results show that the proposed algorithm is able to generate disturbance invariant sets for standard 3D aerial and planar ground vehicles models, and the NMPC algorithm successfully computes obstacle avoidance trajectories using the disturbance invariant sets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.