This article may be used for research, teaching, and private study purposes.Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden.
It is necessary to examine the measurement invariance (MI) among groups in studies where different groups are compared by using a measurement instrument. Most of the studies, measurement invariance is tested with multiple group confirmatory factor analysis. This model applies many model adjustments based on the modification indexes. Therefore, it is not practical due to too many large modification indexes while testing MI over many groups. Besides scalar model is a poor model fit when comparing many groups and so does not hold MI. In this study, the aim is to explain the basic concepts and processes of the alignment method which is offered as a new method for testing MI and illustrate an application on the real data set. In this study, measurement invariance among 56 countries including Turkey is tested with alignment method in order to set an example for researchers. For this purpose, the Instrumental Motivation Scale data, which is one of the psychological measurement instruments used in PISA 2015, was used. As a result of MG-CFA, it was found that configural invariance was ensured. The fit indexes of CFI and TLI were calculated as 0.982 and 0.946 respectively in this stage. After that, metric invariance was tested by considering the difference of fit indices obtained for the two stages. It was found that the metric invariance could not be provided. Alignment results show which countries hold MI and which do not. Besides it provides information which items have the most invariants for groups that hold MI.
The primary aim of this study is to prepare an easily accessible resource about the sample size necessary for researchers working in the fields of social and educational sciences to obtain appropriate results in confirmatory factor analysis (CFA). The other aim is to determine the prediction bias, mean square error and statistical power of the predictions obtained by the confirmatory factor analysis based on Bayesian approach using informative and non-informative a priori in small samples under various conditions, different factor loadings and correlation conditions between factors. determination. Especially the informative priors perform well, and this at all sample sizes and also Bayesian CFA performs less well when the informative priors are miss specified. Bayesian CFA performs better than ML-CFA when the factor loadings are weak, even with a diffuse prior. With weak factor loadings, the estimates are biased upwards, especially at (very) small sample sizes (N=50 or less). Bayesian CFA performs better than ML-CFA at low factor loadings, especially at smaller sample sizes. Bayesian CFA does better at lower sample sizes, if the priors on the factor loadings are informative. While ML-CFA runs into problems at low sample sizes and weak to moderate factor loadings, Bayesian CFA consistently runs without errors.
Bu çalışmanın amacı psikometride önemli bir geçerlik sorunu teşkil eden madde yanlılığının belirlenmesinde kullanılan farklı değişen madde fonksiyonu yöntemlerini kullanarak yöntemlerin uygulamadaki benzerlik ve farklılıklarının ortaya konmasıdır. Bu amaçla alanyazında kullanılan iki yöntem olan sıralı lojistik regresyon ve poly-SIBTEST yöntemleri ile değişen madde fonksiyonu analizleri yapılmıştır. Yöntemlere ilişkin değişen madde fonksiyonu analizleri, PISA 2006’da uygulanan bir öğrenci anketi maddelerine uygulanmıştır. Çalışma grubu ise kültürel ve dilsel farklılıkları yansıtan Avustralya, Yeni Zelanda, Amerika Birleşik Devletleri ve Türkiye olmak üzere dört ülke verisinden oluşmaktadır. Verilerin analizi aşamasında öncelikle öğrenci anketinin her bir ülkedeki faktör yapısı doğrulayıcı faktör analizi ile incelenmiştir. Devamında, sıralı lojistik regresyon ve poly-SIBTEST yöntemleri ile ölçme aracının benzer-farklı kültür ve dillerde değişen madde fonksiyonu analizi yapılmış olup yöntemlerin değişen madde fonksiyonunu belirleme benzerlikleri incelenmiştir. Doğrulayıcı Faktör Analizi bulguları ölçme aracının her bir ülkede aynı faktör yapısına sahip olduğunu göstermiştir. Sıralı lojistik regresyon ve poly-SIBTEST yöntemleri ile yapılan değişen madde fonksiyonu analiz bulguları ise ülkeler arasında kültürden ve dilden kaynaklı farklılıklar arttıkça değişen madde fonksiyonlu madde sayısında artış olduğunu göstermiştir. Yöntemlerin uyumları incelendiğinde ise her iki yöntemin değişen madde fonksiyonu belirlemede uyumlu olduğu; ancak poly-SIBTEST yöntemi ile daha hassas DMF analizinin yapıldığı belirlenmiştir.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.