The Earth-to-Orbit Team (ETO) of the Advanced Concepts Office (ACO) at NASA Marshall Space Flight Center (MSFC) is considered the pre-eminent "go-to" group for pre-phase A and phase A concept definition. Over the past several years the ETO team has evaluated thousands of launch vehicle concept variations for a significant number of studies including agency-wide efforts such as the Exploration Systems Architecture Study (ESAS), Constellation, Heavy Lift Launch Vehicle (HLLV), Augustine Report, Heavy Lift Propulsion Technology (HLPT), Human Exploration Framework Team (HEFT), and Space Launch System (SLS).The ACO ETO Team is called upon to address many needs in NASA's design community; some of these are defining extremely large trade-spaces, evaluating advanced technology concepts which have not been addressed by a large majority of the aerospace community, and the rapid turn-around of highly time critical actions. It is the time critical actions, those often limited by schedule or little advanced warning, that have forced the five member ETO team to develop a design process robust enough to handle their current output level in order to meet their customer's needs. Based on the number of vehicle concepts evaluated over the past year this output level averages to four completed vehicle concepts per day. Each of these completed vehicle concepts includes a full mass breakdown of the vehicle to a tertiary level of subsystem components and a vehicle trajectory analysis to determine optimized payload delivery to specified orbital parameters, flight environments, and delta v capability. A structural analysis of the vehicle to determine flight loads based on the trajectory output, material properties, and geometry of the concept is also performed.Due to working in this fast-paced and sometimes rapidly changing environment, the ETO Team has developed a finely tuned process to maximize their delivery capabilities. The objective of this paper is to describe the interfaces between the three disciplines used in the design process: weights and sizing, trajectory, and structural analysis. The tools used to perform such analysis are INtegrated Rocket Sizing (INTROS), Program to Optimize Simulated Trajectories (POST), and Launch Vehicle Analysis (LVA) respectively. The methods each discipline uses to streamline their particular part of the design process will also be discussed.https://ntrs.nasa.gov/search.jsp?R=20120014467 2018-05-12T09:40:01+00:00Z
With a heavy lift launch vehicle as the centerpiece of our nation's next exploration architecture's infrastructure, the Advanced Concepts Office at NASA's Marshall Space Flight Center initiated a study to examine the utilization of elements derived from a heavy lift launch vehicle for other potential launch vehicle applications. The premise of this study is to take a vehicle concept, which has been optimized for Lunar Exploration, and utilize the core stage with other existing or near existing stages and boosters to determine lift capabilities for alternative missions. This approach not only yields a vehicle matrix with a wide array of capabilities, but also produces an evolutionary pathway to a vehicle family based on a minimum development and production cost approach to a launch vehicle system architecture, instead of a purely performance driven approach. The upper stages and solid rocket booster selected for this study were chosen to reflect a cross-section of: modified existing assets in the form of a modified Delta IV upper stage and Castor-type boosters; potential near term launch vehicle component designs including an Ares I upper stage and 5-segment boosters; and longer lead vehicle components such as a Shuttle External Tank diameter upper stage. The results of this approach to a modular launch system are given in this paper.
The Marshall Space Flight Center Advanced Concepts Office (ACO) has the leading role for NASA's preliminary conceptual launch vehicle design and performance analysis. Over the past several years the ACO Earth-to-Orbit Team has evaluated thousands of launch vehicle concept variations for a multitude of studies including agency-wide efforts such as the Exploration Systems Architecture Study (ESAS), Constellation, Heavy Lift Launch Vehicle (HLLV), Heavy Lift Propulsion Technology (HLPT), Human Exploration Framework Team (HEFT), and Space Launch System (SLS).NASA plans to continue human space exploration and space station utilization. Launch vehicles used for heavy lift cargo and crew will be needed. One of the current leading concepts for future heavy lift capability is an inline one and a half stage concept using solid rocket boosters (SRB) and based on current Shuttle technology and elements. Potentially, the quickest and most cost-effective path towards an operational vehicle of this configuration is to make use of a demonstrator vehicle fabricated from existing shuttle assets and relying upon the existing STS launch infrastructure. Such a demonstrator would yield valuable proof-of-concept data and would provide a working test platform allowing for validated systems integration. Using shuttle hardware such as existing RS-25D engines and partial MPS, propellant tanks derived from the External Tank (ET) design and tooling, and four-segment SRB's could reduce the associated upfront development costs and schedule when compared to a concept that would rely on new propulsion technology and engine designs.There are potentially several other additional benefits to this demonstrator concept. Since a concept of this type would be based on man-rated flight proven hardware components, this demonstrator has the potential to evolve into the first iteration of heavy lift crew or cargo and serve as a baseline for block upgrades. This vehicle could also serve as a demonstration and test platform for the Orion Program. Critical spacecraft systems, re-entry and recovery systems, and launch abort systems of Orion could also be demonstrated in early test flights of the launch vehicle demo. Furthermore, an early demonstrator of this type would provide a stop-gap for retaining critical human capital and infrastructure while affording the current emerging generation of young engineers opportunity to work with and capture lessons learned from existing STS program offices and personnel, who were integral in the design and development of the Space Shuttle before these resources are no longer available.The objective of this study is to define candidate launch vehicle demonstration concepts that are based on Space Shuttle assets and determine their performance capabilities and how these demonstration vehicles could evolve to a heavy lift capability to low earth orbit.
In this new era of space exploration, a host of launch vehicles are b e i i examined for possible use in transporting cargo and crew to low Earth orbit and beyond. Launch vehicles derived from the Space Shuttle Program (SSP), known as Shuttle Derived Vehicles (SDVs), are prime candidates for heavy-lift duty because of their potential to minimize nonrecunring costs and because the Shuttle can leverage off proven high-performance flight systems with established ground and flight support. To determine the merits of SDVs, a detailed evaluation was performed. This evaluation included a trade study and risk assessment of options based on performance, safetyheliability, cost, operations, and evolution. The purpose of this paper i s to explain the approach, processes, and tools used to evaluate launch vehicles for heavy lift cargo transportation. The process included defining the trade space, characterizing the concepts, analyzing the systems, and scoring the options, The process also included a review by subject experts from NASA and industry to compare past and recent study data and assess the risks. A set of technical performance measures (TPMs) was generated based on the study requirements and constraints. Tools such as INTROS and POST were used to calculate performance, FIRST was used for prediction of reliability, and other software packages, both commercial and NASA-owned, were applied to study the trade space. By following a clear proces and using the right tools a thorough assessment was performed. An SDV can be classified as either a side-mount vehicle (SMV) or an in-line vehicle OLV). An SMV is a Space Shuttle where the Orbiter is replaced by a cargo carrier. An ILV is comprised of a modified Shuttle External Tank (ET) with engines mounted to the bottom and cargo mounted atop. For both f d e s of vehicles, Solid Xwket Boosters (SRBs) are attached to the ET. The first derivate of Shuttle is defined as the vehicle with minimum changes necessafy to transform the Space Shuttle into an SDV. Deltas from the first derivate were also formulated to study more SDV options. Examples of deltas include replacing the SRBs with larger and/or more SRBs, adding an upper stage, increasing the size of the ET, changing the engines, and modifying the elements. Challenges for SDV range from tailoring infrastructure to meeting the exploration schedule. Although SDV is based on the Space Shuttle, it still includes development risk for designing and building a Cargo Carrier. There are also performance challenges in that Shuttle is not optimized for cargo-only missions, but it is a robust system built on reusability. Balancing the strengths and weaknesses of the Shuttle to meet Lunar and Mars mission objectives provides the framework for an informative trade study. SDV was caremy analyzed and the results of the study provide invaluable data for use in the new exploration initiative.
The Advanced Concepts Office at NASA's George C. Marshall Space Flight Center was tasked to define the thrust requirement of a new liquid oxygen rich staged combustion cycle hydrocarbon engine that could be utilized in a launch vehicle to meet NASA's future heavy lift needs. Launch vehicle concepts were sized using this engine for different heavy lift payload classes. Engine out capabilities for one of the heavy lift configurations were also analyzed for increased reliability that may be desired for high value payloads or crewed missions. The applicability for this engine in vehicle concepts to meet military and commercial class payloads comparable to current ELV capability was also evaluated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.