Landauer's principle connects the logical reversibility of computational operations to physical reversibility and hence to energy dissipation, with important theoretical and practical consequences. We report the first experimental test of Landauer's principle. For logically reversible operations we measure energy dissipations much less than k B T log 2, while irreversible operations dissipate much more than k B T log 2. Measurements of a logically reversible operation on a bit with energy 30 k B T yield an energy dissipation of 0.01 k B T . #
According to Landauer’s principle, dissipation of energy is only necessary when information is erased, suggesting that vastly more efficient logical switches than transistors are possible. However, an influential analysis of binary switching suggests that representing information with electric charge is the root of the problem, that Landauer’s principle is fundamentally flawed, and that any movement of charge, such as charging a capacitor, must dissipate at least kBT ln(2). Here, using a RC circuit, an energy loss of much less than kBT ln(2) is demonstrated while delivering energy of 100 kBT ln(2) to the capacitor. This shows that there is no fundamental lower limit to energy dissipation in moving charge.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.