The occurrence of strong and abrupt rainfall, together with a wrong land use planning and an uncontrolled urban development, can constitute a risk for infrastructure and population. The water flow in the subsoil, under certain conditions, may cause underground cavities formation. This phenomena known as soil piping can evolve and generate the surface collapse. It is clear that such phenomena in densely urbanized areas represent an unpredictable and consistent risk factor, which can interfere with social activities. In this study a multidisciplinary approach aimed to obtain useful information for the mitigation of the risks associated with the occurrence of soil piping phenomena in urban areas has been developed. This approach is aimed at defining the causes of sudden soil subsidence events, as well as the definition of the extension and possible evolution of these instability areas. The information obtained from rainfall data analysis, together with a study of the morphological, geological and hydrogeological characteristics, have allowed us to evaluate the causes that have led to the formation of soil pipes. Furthermore, performance of 3D electrical resistivity surveys in the area affected by the instability have allowed us to estimate their extension in the subsoil and identifying the presence of further areas susceptible to instability.
The Trecastagni Fault (TF) is an important tectonic structure in the middle-lower southern flank of Mt. Etna volcano. It is characterised by evident morphological slopes with normal dip-slip ruptures that directly affect roads and buildings. The TF plays a key role in the complex framework of the volcano dynamics since it represents part of the southern boundary of the unstable sector. Seismic surveys have been performed on three different areas of the fault to gain insights into the seismic stratigraphic structure of the subsoil. We considered the seismic activity of a sector of the territory affecting the surface evidence of the Trecastagni Fault in the period between 1980 and 2021 in order to highlight the main seismic release and define the space–time distribution of seismicity. Most of the seismicity is located in the north-western portion, while the central and southern sectors are characterised by low seismic activity. The strongest earthquakes occur mainly within the first 5 km of depth in the form of swarms and/or isolated shocks. Ground deformation techniques (levelling, In-SAR and two continuous extensometers) evidence a continuous aseismic slip of the TF that is interrupted by short accelerations accompanied by shallow seismicity. The Trecastagni Fault dynamics are strictly linked to magma pressurisation and intrusive episodes of Mt. Etna that induce additional stress and promote its slip along the fault plane. Multidisciplinary data analysed in this work, evidenced the dual behaviour of the fault, from aseismic creep to stick-slip, and the relation with magmatic activity, also suggesting the time delay in the response of the fault after the intense stress induced by dyke intrusion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.