MT progresses rapidly to significant morbidity and mortality despite level I TC care. Patients who require MT can be predicted early, and persistent low StO2 identifies those MT patients destined to have poor outcome. The ultimate goal is to identify these high risk patients as early as possible to test new strategies to improve outcome. Further validation studies are needed to analyze appropriate allocation and study appropriate use of damage control interventions.
The aim of this study was to investigate the effects of a single tensile overload on subsequent fatigue crack growth in a 316L stainless steel. Fatigue tests were conducted under the plane stress condition, and further supplemented with compliance measurements and field emission scanning electron microscopy (FESEM) observations. Effects of a tensile overload, e.g. initial acceleration and subsequent retardation of fatigue crack growth, were explained and quantified by FESEM and compliance measurements. The FESEM observations suggest that the initial crack growth acceleration stems from void and quasi‐cleavage fracture within the fatigue damage zone in the vicinity of the crack tip. Systematic compliance measurements taken during fatigue crack growth suggest that the overall crack growth retardation is related to strain hardening and residual compressive stress produced by the plastic deformation associated with the tensile overload.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.