SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin subfamily A member 2 (SMARCA2), also known as Brahma homologue (BRM), is a Snf2-family DNA-dependent ATPase. BRM and its close homologue Brahma-related gene 1 (BRG1), also known as SMARCA4, are mutually exclusive ATPases of the large ATPdependent SWI/SNF chromatin-remodeling complexes involved in transcriptional regulation of gene expression. No small molecules have been reported that modulate SWI/SNF chromatin-remodeling activity via inhibition of its ATPase activity, an important goal given the well-established dependence of BRG1-deficient cancers on BRM. Here, we describe allosteric dual BRM and BRG1 inhibitors that downregulate BRM-dependent gene expression and show antiproliferative activity in a BRG1mutant-lung-tumor xenograft model upon oral administration. These compounds represent useful tools for understanding the functions of BRM in BRG1-loss-of-function settings and should enable probing the role of SWI/SNF functions more broadly in different cancer contexts and those of other diseases.
Inhibition of mutant IDH1 is being evaluated clinically as a promising treatment option for various cancers with hotspot mutation at Arg. Having identified an allosteric, induced pocket of IDH1, we have explored 3-pyrimidin-4-yl-oxazolidin-2-ones as mutant IDH1 inhibitors for modulation of 2-HG production and potential brain penetration. We report here optimization efforts toward the identification of clinical candidate (), a potent and selective mutant IDH1 inhibitor that has demonstrated brain exposure in rodents. Preclinical characterization of this compound exhibited correlation of 2-HG reduction and efficacy in a patient-derived IDH1 mutant xenograft tumor model. () has progressed into human clinical trials for the treatment of cancers with IDH1 mutation.
Oncogenic IDH1 and IDH2 mutations contribute to cancer via production of R-2-hydroxyglutarate (2-HG). Here, we characterize two structurally distinct mutant- and isoform-selective IDH1 inhibitors that inhibit 2-HG production. Both bind to an allosteric pocket on IDH1, yet shape it differently, highlighting the plasticity of this site. Oncogenic IDH1 mutation destabilizes an IDH1 "regulatory segment," which otherwise restricts compound access to the allosteric pocket. Regulatory segment destabilization in wild-type IDH1 promotes inhibitor binding, suggesting that destabilization is critical for mutant selectivity. We also report crystal structures of oncogenic IDH2 mutant isoforms, highlighting the fact that the analogous segment of IDH2 is not similarly destabilized. This intrinsic stability of IDH2 may contribute to observed inhibitor IDH1 isoform selectivity. Moreover, discrete residues in the IDH1 allosteric pocket that differ from IDH2 may also guide IDH1 isoform selectivity. These data provide a deeper understanding of how IDH1 inhibitors achieve mutant and isoform selectivity.
High throughput screening and subsequent hit validation identified 4-isopropyl-3-(2-((1-phenylethyl)amino)-pyrimidin-4-yl)oxazolidin-2-one as a potent inhibitor of IDH1 R132H . Synthesis of the four separate stereoisomers identified the (S,S)-diastereomer (IDH125, 1f) as the most potent isomer. This also showed reasonable cellular activity and excellent selectivity vs IDH1 wt . Initial structure−activity relationship exploration identified the key tolerances and potential for optimization. X-ray crystallography identified a functionally relevant allosteric binding site amenable to inhibitors, which can penetrate the blood−brain barrier, and aided rational optimization. Potency improvement and modulation of the physicochemical properties identified (S,S)-oxazolidinone IDH889 (5x) with good exposure and 2-HG inhibitory activity in a mutant IDH1 xenograft mouse model. KEYWORDS: Mutant IDH1 inhibitor, allosteric inhibition, 2-HG, preclinical in vivo activity, 3-pyrimidin-4-yloxazolidin-2-one, chirality-defined potency H otspot heterozygous mutations in human cytoplasmic isocitrate dehydrogenase 1 (IDH1) at Arg 132 (R132*) have been identified in multiple cancer types, including acute myeloid leukemia (AML), glioma, chondrosarcoma, and cholangiocarcinoma. 1 These mutations have been shown to confer a neomorphic catalytic activity to produce high levels of intracellular R-2-hydroxyglutarate (2-HG) and effect downstream epigenetic markers on DNA and proteins. Recent clinical trials in AML patients with a specific inhibitor of IDH1 has shown clinical benefit, confirming the causal link between this genetic mutation, the production of 2-HG, and cancer.11 Efforts herein focused on the identification of compounds that could potentially target all classes of mutant-IDH1 tumors, including those in the brain.The substrate-binding site of mutant IDH1 is highly polar as defined by the amino acids lining the pocket (Figure 1), in addition to the active-site magnesium ion and NADPH cofactor. This suggests a low probability of being able to optimize a compound for potent binding to this site while also fulfilling the criteria most conducive to crossing the blood− brain barrier (BBB).12 It was decided to explore the identification of catalytic inhibitors with different mechanisms of action, which may bind distal to this polar substrate-binding site.High throughput screening was carried out with a NADPH fluorescence-based biochemical assay using IDH1 R132H homodimer protein, and orthogonal biochemical inhibition confirmation using an LCMS readout of 2-HG levels. Compounds 1a and 1b were identified as selective and functional inhibitors of IDH1R132H from this screen. Both 1a and 1b were screened as diastereomeric mixtures at the amine (Table 1, Am), which necessitated the independent synthesis of the four separate stereoisomers in order to determine the chiral preference for ligand binding. Potency was found to be most strongly dependent upon the chirality at the amine center (Am), . Amino acids lining the pocket are highl...
Members of the ATP-dependent SWI/SNF chromatin remodeling complexes are among the most frequently mutated genes in cancer, suggesting their dysregulation plays a critical role. The synthetic lethality between SWI/SNF catalytic subunits BRM/SMARCA2 and BRG1/SMARCA4 has instigated great interest in targeting BRM. Here we have performed a critical and in-depth investigation of novel dual inhibitors (BRM011 and BRM014) of BRM and BRG1 in order to validate their utility as chemical probes of SWI/SNF catalytic function, while obtaining insights into the therapeutic potential of SWI/SNF inhibition. In corroboration of ontarget activity, we discovered compound resistant mutations through pooled screening of BRM variants in BRG1-mut cancer cells. Strikingly, genome-wide transcriptional and chromatin profiling (ATAC-Seq) provided further evidence of pharmacological perturbation of SWI/SNF chromatin remodeling as BRM011 treatment induced specific changes in chromatin accessibility and gene expression similar to genetic depletion of BRM. Finally, these compounds have the capacity to inhibit the growth of tumor-xenografts, yielding important insights into the feasibility of developing BRM/BRG1 ATPase inhibitors for the treatment of BRG1-mut lung cancers.Overall, our studies not only establish the feasibility of inhibiting SWI/SNF catalytic function, providing a framework for SWI/SNF therapeutic targeting, but have also yielded successful elucidation of small-molecule inhibitors that will be of importance in probing SWI/SNF function in various disease contexts. 0
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.