Diatoms are a renewable (biologically reproducible) source of three-dimensional (3-D) nanostructured silica that could be attractive for a variety of photonic devices, owing to the wide range of quasi-periodic patterns of nano-to-microscale pores available on the silica microshells (frustules) of various diatom species. We have investigated the optical behavior of the silica frustule of a centric marine diatom, Coscinodiscus wailesii, using a coherent broadband (400-1700 nm) supercontinuum laser focused to a fine (20 µm diameter) spot. The C. wailesii frustule valve, which possessed a quasi-periodic hexagonal pore array, exhibited position-dependent optical diffraction. Changes in such diffraction behavior across the frustule were consistent with observed variations in the quasi-periodic pore pattern.
We report an observation of multi-photon excitation of organic chromophores in microbubble whispering gallery mode resonators. High-Q microbubble resonators were formed by heating a pressurized fused silica capillary to form a hollow bubble that was then filled with liquid. In this work, the microbubble was filled with a solution of Rhodamine 6G dye. The resonator and dye were excited by evanescently coupling continuous wave (CW) light from a 980 nm laser diode using a tapered optical fiber. The two-photon fluorescence of the dye can be seen with pump powers as low as 700 μW.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.