The two most urgent and interlinked environmental challenges humanity faces are climate change and biodiversity loss. We are entering a pivotal decade for both the international biodiversity and climate change agendas with the sharpening of | 2847 SHIN et al.
Changing climate and human demographics in the world’s mountains will have increasingly profound environmental and societal consequences across all elevations. Quantifying current human populations in and near mountains is crucial to ensure that any interventions in these complex social-ecological systems are appropriately resourced, and that valuable ecosystems are effectively protected. However, comprehensive and reproducible analyses on this subject are lacking. Here, we develop and implement an open workflow to quantify the sensitivity of mountain population estimates over recent decades, both globally and for several sets of relevant reporting regions, to alternative input dataset combinations. Relationships between mean population density and several potential environmental covariates are also explored across elevational bands within individual mountain regions (i.e. “sub-mountain range scale”). Globally, mountain population estimates vary greatly—from 0.344 billion (<5% of the corresponding global total) to 2.289 billion (>31%) in 2015. A more detailed analysis using one of the population datasets (GHS-POP) revealed that in ∼35% of mountain sub-regions, population increased at least twofold over the 40-year period 1975–2015. The urban proportion of the total mountain population in 2015 ranged from 6% to 39%, depending on the combination of population and urban extent datasets used. At sub-mountain range scale, population density was found to be more strongly associated with climatic than with topographic and protected-area variables, and these relationships appear to have strengthened slightly over time. Such insights may contribute to improved predictions of future mountain population distributions under scenarios of future climatic and demographic change. Overall, our work emphasizes that irrespective of data choices, substantial human populations are likely to be directly affected by—and themselves affect—mountainous environmental and ecological change. It thereby further underlines the urgency with which the multitudinous challenges concerning the interactions between mountain climate and human societies under change must be tackled.
Experimental data on net photosynthetie rate change of lichens in response to temperature and water stress were collected and standardized. The method of nonuniform hierarchical structured data interpolation was applied to assess lichen sensitivity to climatic stress for species and territories where sensitivity has not been measured in a laboratory. The alternative method of lichen sensitivity to climatic stress assessment is the analysis of species ranges, abundance, and occurrence. This approach is especially effective for areas with a manifest climatic gradient and where multiple floristic zone boundaries occur. Assessments of sensitivity of the Negev Desert lichens to long-term temperature increase were obtained using the second approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.