One sentence summary:We describe a general liquid-phase method to exfoliate layered compounds to give monoand few-layer flakes in large quantities. TMDs consist of hexagonal layers of metal atoms, M, sandwiched between two layers of chalcogen atoms, X, with stoichiometry MX 2 . While the bonding within these tri-layer sheets is covalent, adjacent sheets stack via van der Waals interactions to form a 3D crystal. TMDs occur in more than 40 different types (2, 3) depending on the combination of chalcogen (S, Se or Te) and transition metal(3). Depending on the co-ordination and oxidation state of the metal atoms, TMDs can be metallic, semi-metallic or semiconducting(2, 3), e.g. WS 2 is a semiconductor while NbSe 2 is a metal(3). In addition, superconductivity(4) and charge density wave effects(5) have been observed in some TMDs. This versatility makes them potentially useful in many areas of electronics.However, like graphene(6), layered materials must be exfoliated to fulfil their full potential. For example, films of exfoliated Bi 2 Te 3 should display enhanced thermoelectric efficiency by suppression of thermal conductivity(7). Exfoliation of 2D topological insulators such as Bi 2 Te 3 and Bi 2 Se 3 would reduce residual bulk conductance, 4 highlighting surface effects. In addition, we can expect changes in electronic properties as the number of layers is reduced e.g. the indirect bandgap of bulk MoS 2 becomes direct in few-layer flakes(8). Although exfoliation can be achieved mechanically on a small scale(9, 10), liquid phase exfoliation methods are required for many applications(11).Critically, a simple liquid exfoliation method would allow the formation of novel hybrid and composite materials. While TMDs can be chemically exfoliated in liquids(12-14), this method is time consuming, extremely sensitive to the environment and incompatible with most solvents.We demonstrate exfoliation of bulk TMD crystals in common solvents to give mono-and few layer nano-sheets. This method is insensitive to air and water and can potentially be scaled up to give large quantities of exfoliated material. In addition, we show that this procedure allows the formation of hybrid films with enhanced properties.We initially sonicated commercial MoS 2 , WS 2 and BN (15, 16) powders in a number of solvents with varying surface tensions. The resultant dispersions were centrifuged and the supernatant decanted (Section S3). Optical absorption spectroscopy showed that the amount of material retained (characterised by / A l C α = , where A/l is the absorbance per length, α is the extinction coefficient and C is the concentration) was maximised for solvents with surface tension close to 40 mJ/m 2 (17, 18) ( Fig. 1A-C). Detailed analysis, within the framework of Hansen solubility parameter theory(19), shows successful solvents to be those with dispersive, polar and H-bonding components of the cohesive energy density within certain well-defined ranges (Section S4, Figs. S2-S3). This can be interpreted to mean that successful solvents are those w...
We have developed methods to exfoliate MoS 2 in large quantities in surfactant-water solutions. This method can be extended to a range of other layered compounds. The layered material tends to be exfoliated as relatively defect free flakes with lateral sizes of 100s of nm. 2With high surface area and novel properties, two-dimensional (2D) materials are potentially useful for a range of applications. In addition to graphene, many 2D compounds exist with BN, MoS 2 and Bi 2 Te 3 generating renewed interest. Such materials are found stacked in layered crystals and can be metals, semiconductors or insulators.[ tend to bond via van der Waals interactions, stacking to form 3D crystals. These materials span the whole gamut of electronic structures from insulator to metal [1] and display interesting properties [6] such as superconductivity, [3] thermoelectricity [2] and topological insulator effects.[4]While micro-mechanically exfoliated [7] single flakes of materials such as MoS 2 are ideal for electronic devices, [8] large scale liquid-phase exfoliation methods will lead to a range of thin film applications such as nano-scale hybrids for use in thermoelectrics, [9] supercapacitors [10] or Li-ion batteries [11] . One advantage of such applications is that, as the electronic properties of TMDs vary relatively slowly with layer number, [12,13] full exfoliation to monolayers is not necessary; dispersed few-layer flakes are sufficient.While a number of layered compounds can be exfoliated by ion intercalation, [14][15][16][17] this method is time consuming, extremely sensitive to environmental conditions and results in structural deformations in some TMDs.[18] Furthermore, removal of the ions results in re-aggregation of the layers.[19] More promisingly, it has recently been shown that both TMDs [20] and BN can be exfoliated in organic solvents. [21][22][23][24] However, for large-scale applications, exfoliation in an aqueous environment would be hugely advantageous. While BN can be dispersed in water due to sonication-assisted hydrolysis, this method cannot be extended to other layered compounds.[25] The discovery of a facile, scalable method to exfoliate a range of layered materials in water would assist the production and 3 characterisation of a range of new materials and greatly facilitate the potential transfer of such technology to industry. In this work we show that a number of layered crystals can be exfoliated in water, resulting in thin flakes stabilised by a surfactant coating. This method is robust, can be carried out in ambient conditions, is scalable and allows the preparation of films, hybrids and composites.One possible reason why ion intercalation has been prevalent for TMDs rather than other liquid based dispersion methods is the relatively high exfoliation (surface) energy of TMDs. Computational studies have estimated this as greater than 250 mJ/m 2 for both MoS 2 and WS 2 ; [26,27] many times greater than that of graphene [28] or BN [29] . We suggest that sonication can be used to exfoliate TMDs in water,...
Organic thin film nanocomposites, prepared by liquid‐phase exfoliation, were investigated for their superior electrical properties and thermoelectric behavior. Single‐walled carbon nanotubes (SWNT) were stabilized by intrinsically conductive poly(3,4‐ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) in an aqueous solution. The electrical conductivity (σ) was found to increase linearly as 20 to 95 wt % SWNT. At 95 wt % SWNT, these thin films exhibit metallic electrical conductivity (∼4.0 × 105 S m−1) that is among the highest values ever reported for a free‐standing, fully organic material. The thermopower (S) remains relatively unaltered as the electrical conductivity increases, leading to a maximum power factor (S2σ) of 140 μW m−1 K−2. This power factor is within an order of magnitude of bismuth telluride, so it is believed that these flexible films could be used for some unique thermoelectric applications requiring mechanical flexibility and printability. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013
The thermoelectric properties of fully organic nanocomposites were investigated, for which meso‐tetra(4‐carboxyphenyl) porphine (TCPP) and poly(3,4‐ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) were used as instrinically conductive and semiconducting stabilizers, respectively. The electrical conductivity (σ) of these dual‐stabilizer organic composites increased to approximately 9500 S m−1 as the concentrations of both the multiwalled carbon nanotubes (MWNTs) and PEDOT:PSS were increased. The thermopower (or Seebeck coefficient, S) and thermal conductivity, however, remained relatively unaffected by the increase in concentration (≈40 μV K−1 and ≈0.12 W m−1 K−1, respectively). Replacing MWNTs with double‐walled carbon nanotubes (DWNTs) increased σ and S to approximately 96 000 S m−1 and 70 μV K−1, respectively, at 40 wt % DWNTs. This study suggests that σ and S can be simultaneously tailored by using multiple stabilizing agents to affect the transport properties of the junctions between nanotubes. Combining semiconducting and intrinsically conductive molecules as CNT‐stabilizers has led to a power factor that is among the best for a completely organic, free‐standing film (≈500 μW m−1 K−2). These flexible, segregated‐network nanocomposites now exhibit properties that rival the more conventional inorganic semiconductors, particularly when normalized by the mass.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.