Climate challenges in recent decades have forced a change in attitude towards forms of environmental interaction. The International Climate Conference COP26 evidences the relevance of the climate issue at the global level in Glasgow (November 2021). A decrease in natural energy resources leads to a search for alternative energy sources. Given this, this article is devoted to studying the peculiarities of the transition to climate management of the green energy transmission chain based on the circular economy and smart technologies. This paper has used simulation modeling to develop an algorithm for applying a smart approach to climate management of the green energy transmission chain based on the work of Industry 4.0 technologies. The result of this modeling will be the importance of strengthening the ability to develop intersectoral partnerships to create climate-energy clusters based on a closed cycle of using energy resources and developing smart technologies. At the same time, it has been found that COVID-19 has changed the behaviour of energy consumers towards the transition to the use of energy from renewable sources that are carbon neutral. With this in mind, this article has assessed the climate capacity of industries to use green energy from renewable sources based on resource conservation (rational use of energy resources) and climate neutrality. The industries of Ukraine, which are the largest consumers of energy and, at the same time, significantly affected by climate change, were taken for the study: industry, transport, and agriculture. The methodology for determining the indicator of the climate capacity of sectors in the transition to green energy has been based on the correlation index (ratio) of the consumption indicator of various types of energy by industries (petroleum products; natural gas; biofuels and waste; electricity) and the indicator of gross value added of industries in pre-COVID-19 and COVID-19 conditions. The results have indicated that the use of energy from renewable sources (biofuels and waste) for the production of goods and services, as well as the economical nature of the provision of raw materials (biomass and faeces) are factors that ensure climate industry neutrality and enhance its climate capability. The prospects of such effects of assessing the climate capacity of sectors will be the basis for the rationale to develop intersectoral partnerships to create climate-energy clusters based on a closed cycle of using energy resources and developing smart technologies.
Celem artykułu jest zaproponowanie modelu metasystemu, jako koncepcji rozszerzającej perspektywę poznawczą w definiowaniu systemów zarządzania, integrującej charakterystyki systemów, kontekst i ośrodki kreujące te systemy. Zastosowane rozwiązanie polega na wzbogaceniu modelu systemu zarządzania o rezultaty spojrzenia nań z perspektywy paradygmatu interpretatywnego. Proponowana koncepcja stanowi krok w kierunku integracji koncepcji systemów zarządzania oraz rozwinięcia nowych metod ich diagnostyki dzięki uwzględnieniu roli projektantów i użytkowników systemu oraz ich wiedzy i doświadczenia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.