A multilayer learning network assisted with frequency offset cancellation is proposed for modulation classification in satellite to ground link. Carrier frequency offset greatly reduces modulation classification performance. It is necessary to cancel frequency offset before modulation classification. Frequency offset cancellation weights are established through multilayer learning network based on MSE criterion. Then the weight and hidden layer of multilayer learning network are also established for modulation classification. The hidden layers and weight are trained and tuned to combat the interference introduced by frequency offset. Compared with current modulation classification algorithm, the proposed multilayer learning network greatly improves the Probability of Correct Classification (PCC). It has been proven that the proposed multilayer learning network assisted with frequency offset has higher performance for modulation classification within the same training sequence.
A deep learning architecture based on Extensible Neural Networks is proposed for modulation classification in multipath fading channel. Expanded Neural Networks (ENN) are established based on energy natural logarithm model. The model is set up using hidden layers. Modulation classification based on ENN is implemented through the amplitude, phase, and frequency hidden network, respectively. In order to improve Probability of Correct classification (PCC), one or more communication signal features are extracted using hidden networks. Through theoretical proof, ENN learning network is demonstrated to be effective in improving PCC using amplitude, phase, and the frequency weight subnetwork, respectively. Compared with the traditional algorithms, the simulation results show that the proposed ENN has higher PCC than traditional algorithm for modulation classification within the same training sequence and Signal to Noise Ratio (SNR).
A multiuser detection (MUD) algorithm based on deep learning network is proposed for the satellite mobile communication system. Due to relative motion between the satellite and users, multiple access interference (MUI) introduced by multipath fading channel reduces system performance. The proposed MUD algorithm based on deep learning network firstly establishes the CINR optimal loss function according to the multiuser access mode and then obtains the best multiuser detection weight through the steepest gradient iteration. Multilayer nonlinear learning obtains interference cancellation sharing weights to achieve maximum signal-to-noise ratio through gradient iteration, which is superior than the traditional serial interference cancellation algorithm and parallel interference cancellation algorithm. Then, the weights with multiuser detection through multilayer network forward learning iteration are obtained with traditional multiuser detecting quality characteristics. The proposed multiuser access detection based on deep learning network algorithm improves the MUD accuracy and reduces the number of traditional multiusers. The performance of the satellite multifading uplink system shows that the proposed deep learning network can provide high precision and better iteration times.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.