Infection, as a common postoperative complication of orthopedic surgery, is the main reason leading to implant failure. Silver nanoparticles (AgNPs) are considered as a promising antibacterial agent and always used to modify orthopedic implants to prevent infection. To optimize the implants in a reasonable manner, it is critical for us to know the specific antibacterial mechanism, which is still unclear. In this review, we analyzed the potential antibacterial mechanisms of AgNPs, and the influences of AgNPs on osteogenic-related cells, including cellular adhesion, proliferation, and differentiation, were also discussed. In addition, methods to enhance biocompatibility of AgNPs as well as advanced implants modifications technologies were also summarized.
The refractory of castration-resistant prostate cancer (CRPC) is mainly reflected in drug resistance. The current research on the resistance mechanism of CRPC is still in its infancy. In this study, we revealed for the first time the key role of LncRNA PCBP1-AS1 in CRPC drug resistance. Through detailed in vivo and in vitro studies, we found that PCBP1-AS1 may enhance the deubiquitination of AR/AR-V7 by stabilizing the USP22-AR/AR-V7 complex, thereby preventing AR/AR-V7 from being degraded through the ubiquitin–proteasome pathway. Targeting PCBP1-AS1 can significantly restore the drug sensitivity of enzalutamide-resistant tumors in vivo and in vitro. Our research further expands the function of LncRNA in castration-resistant prostate cancer, which may provide new potential for clinical diagnosis and targeted therapy.
BackgroundExosomes play an important role in cell-cell communication by transferring genetic materials such as long non-coding RNAs (lncRNAs) between cancer cells and tumor-associated macrophages (TAMs) in the tumor microenvironment (TME). Recent studies revealed that lncRNA ELFN1-AS1 could function as an oncogene in many human cancers. However, the role of extracellular lncRNA ELFN1-AS1 in cell-to-cell communication of osteosarcoma (OS) has not been fully investigated.MethodsFunctional studies, including CCK-8, EdU staining and transwell assay were performed to investigate the role of ELFN1-AS1 in the progression of OS. 143B via xenograft mouse model was established to assess the role of ELFN1-AS1 in vivo. In addition, transmission electron microscopy (TEM) and real-time quantitative PCR (RT-qPCR) assay were used to verify the existence of exosomal ELFN1-AS1.ResultsThe level of ELFN1-AS1 was markedly upregulated in patients with advanced OS and in OS cells. In addition, overexpression of ELFN1-AS1 significantly promoted the proliferation, migration and invasion of OS cells, while knockdown of ELFN1-AS1 exhibited the opposite effects. Meanwhile, ELFN1-AS1 could be transferred from OS cells to macrophages via exosomes. Exosomal ELFN1-AS1 from 143B cells was able to promote macrophage M2 polarization, and M2 macrophage in return facilitated OS progression. Mechanistically, overexpression of ELFN1-AS1 upregulated CREB1 level via sponging miR-138-5p and miR-1291 in macrophage via.ConclusionOS cell-derived exosomal ELFN1-AS1 was able to induce macrophage M2 polarization via sponging miR-138-5p and miR-1291, and M2 macrophage notably facilitated the progression of OS. These data suggested that ELFN1-AS1 might serve as a potential therapeutic target for osteosarcoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.