Infection, as a common postoperative complication of orthopedic surgery, is the main reason leading to implant failure. Silver nanoparticles (AgNPs) are considered as a promising antibacterial agent and always used to modify orthopedic implants to prevent infection. To optimize the implants in a reasonable manner, it is critical for us to know the specific antibacterial mechanism, which is still unclear. In this review, we analyzed the potential antibacterial mechanisms of AgNPs, and the influences of AgNPs on osteogenic-related cells, including cellular adhesion, proliferation, and differentiation, were also discussed. In addition, methods to enhance biocompatibility of AgNPs as well as advanced implants modifications technologies were also summarized.
Exosomes are nanoparticles(40-100 nm) secreted by most cells in the body, which can be isolated from several types of extracellular fluids. It has been shown that exosomes play a key role in intercellular communication and in transportation of genetic information. Emerging evidence shows that exosomes are mediators of metastasis in tumour cells, stromal cells and the extracellular matrix component through the shuttling of cargo, such as proteins, lipids, RNAs, double-stranded DNAs, non-transcribed RNAs, and microRNAs. This phenomenon has been indicated in both tumourigenesis and drug resistance. In this review, we introduce new methods of exosome extraction, focusing on the emerging role of exosomes in ovarian cancer, and discuss their potential clinical applications.
Background: The limitation of current biomarker of early stage ovarian cancer and the anatomical location of ovarian (depths of the pelvic) make ovarian cancer difficult to be detected in early stage. Growing evidence shows exosomes as key information transmitters, it carried molecules, such as miRNAs, proteins, lipids, double-stranded DNA have been reported as promising biomarkers in many diseases. However, little is known about the protein and lipid composition of ovarian cancer. Methods: Here, we report proteomic and lipidomic analysis of exosomes derived from ovarian cancer cells (SKOV-3) and ovarian surface epithelial cells (HOSEPiC). Results: A total of 1433 proteins and 1227 lipid species were identified from two cell line derived exosomes. Several lipid species and proteins significantly differ in SKOV-3 derived exosomes compared to those from HOSEPiC. For example, we noted that ChE and ZyE species were in general more abundant in exosomes from SKOV-3 than from HOSEPiC; Collagen type V alpha 2 chain (COL5A2) and lipoprotein lipase (LPL) were significantly higher in SKOV-3 derived exosomes than HOSEpic (p < 0.05). Conclusions: Our research indicates the promising role of exosomal proteins and lipids in the early diagnosis of ovarian cancer.
Prosthesis-associated infections are one of the main causes of implant failure; thus it is important to enhance the long-term antibacterial ability of orthopedic implants. Titanium dioxide nanotubes (TNTs) are biomaterials with good physicochemical properties and biocompatibility. Owing to their inherent antibacterial and drug-loading ability, the antibacterial application of TNTs has received increasing attention. In this review, the process of TNT anodizing fabrication is summarized. Also, the mechanism and the influencing factors of the antibacterial property of bare TNTs are explored. Furthermore, different antibacterial strategies for carrying drugs, as well as modifications to prolong the antibacterial effect and reduce drug-related toxicity are discussed. In addition, antibacterial systems based on TNTs that can automatically respond to infection are introduced. Finally, the currently faced problems are reviewed and potential solutions are proposed. This review provides new insight on TNT fabrication and summarizes the most advanced antibacterial strategies involving TNTs for the enhancement of long-term antibacterial ability and reduction of toxicity.
Bone regeneration remains a great clinical challenge. Two-dimensional materials, especially graphene and its derivative graphene oxide, have been widely used for bone regeneration. Since its discovery in 2014, black phosphorus (BP) nanomaterials including BP nanosheets and BP quantum dots have attracted considerable scientific attention and are considered as prospective graphene substitutes. BP nanomaterials exhibit numerous advantages such as excellent optical and mechanical properties, electrical conductivity, excellent biocompatibility, and good biodegradation, all of which make them particularly attractive in biomedicine. In this review, we comprehensively summarize recent advances of BP-based nanomaterials in bone regeneration. The advantages are reviewed, the different synthesis methods of BP are summarized, and the applications to promote bone regeneration are highlighted. Finally, the existing challenges and perspectives of BP in bone regeneration are briefly discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.