Measurement-device-independent quantum key distribution (MDI-QKD) eliminates all loopholes on detection. Previous experiments of time-bin phase-encoding MDI-QKD allow a factor of 3 4 loss in the final key for the incapability of identifying two successive detection events by a single photon detector. Here we propose a new scheme to realize the time-bin phase-encoding MDI-QKD. The polarization states are used to generate the time bins and the phase-encoding states. The factor of loss in the final key is eliminated by using four single photon detectors at the measurement site. We show the feasibility of our scheme with a proof-of-principle experimental demonstration. The phase reference frame is rotated extremely slowly with only passive stabilization measures. The quantum bit error rate can reach 0.8% in the đť‘Ť-basis and 26.2% in the đť‘‹-basis.
Measurement-device-independent quantum key distribution (MDI-QKD) is immune to all security loopholes on detection. Previous experiments on MDI-QKD required spatially separated signal lasers and complicated stabilization systems. In this paper, we perform a proof-of-principle experimental demonstration of plug-andplay MDI-QKD over an asymmetric channel setting with a single signal laser in which the whole system is automatically stabilized in spectrum, polarization, arrival time, and phase reference. Both the signal laser and the single-photon detectors are in the possession of a common server. A passive timing-calibration technique is applied to ensure the precise and stable overlap of signal pulses. The results pave the way for the realization of a quantum network in which the users only need the encoding devices.
Measurement of fast signal is getting more and more important in many fields. In this paper, we propose to detect a temporal signal based on the idea of computational ghost imaging (GI), which can greatly reduce requirements on bandwidth of detectors. In experiments, we implement retrieving of a temporal signal with time scale of 50ns using a detector of 1kHz bandwidth, which is much lower than the requirement on bandwidth of detector according to information theory. The performance of our technique are also investigated under different detection bandwidths.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.