Cationic liposome-DNA complex (CLDC)-based intravenous gene delivery targets gene expression to vascular endothelial cells, macrophages and tumor cells. We used systemic gene delivery to identify anti-angiogenic gene products effective against metastatic spread in tumor-bearing mice. Specifically, CLDC-based intravenous delivery of the p53 and GM-CSF genes were each as effective as the potent antiangiogenic gene, angiostatin, in reducing both tumor metastasis and tumor angiogenesis. Combined delivery of these genes did not increase anti-tumor activity, further suggesting that each gene appeared to produce its antimetastatic activity through a common antiangiogenic pathway. CLDC-based intravenous delivery of the human wild type p53 gene transfected up to 80% of tumor cells metastatic to lung. Furthermore, it specifically induced the expression of the potent antiangiogenic gene, thrombospondin-1, indicating that p53 gene delivery in vivo may inhibit angiogenesis by inducing endogenous thrombospondin-1 expression. CLDC-based delivery also identified a novel antitumor activity for the metastasis suppressor gene CC3. Thus, CLDC-based intravenous gene delivery can produce systemic antiangiogenic gene therapy using a variety of different genes and may be used to assess potential synergy of combined anti-tumor gene delivery and to identify novel activities for existing anti-tumor genes.
To date, functional genomic studies have been confined to either cell-based assays or germline mutations, using transgenic or knockout animals. However, these approaches are often unable either to recapitulate complex biologic phenotypes, such as tumor metastasis, or to identify the specific genes and functional pathways that produce serious diseases in adult animals. Although the transcription factor NF-B transactivates many metastasis-related genes in cells, the precise genes and functional-pathways through which NF-B regulates metastasis in tumor-bearing hosts are poorly understood. Here, we show that the systemic delivery of plasmidbased ribozymes targeting NF-B in adult, tumor-bearing mice suppressed NF-B expression in metastatic melanoma cells, as well as in normal cell types, and significantly reduced metastatic spread. Plasmid-based ribozymes suppressed target-gene expression with sequence specificity not achievable by using synthetic oligonucleotide-based approaches. NF-B seemed to regulate tumor metastasis through invasion-related, rather than angiogenesis-, cellcycle-or apoptosis-related pathways in tumor-bearing mice. Furthermore, ribozymes targeting either of the NF-B-regulated genes, integrin 3 or PECAM-1 (a ligand-receptor pair linked to cell adhesion), reduced tumor metastasis at a level comparable to NF-B. These studies demonstrate the utility of gene targeting by means of systemic, plasmid-based ribozymes to dissect out the functional genomics of complex biologic phenotypes, including tumor metastasis.
Non-human primate models of human disease have an important role in the translation of a new scientific finding in lower species into an effective treatment. In this study, we tested a new therapeutic antibody against the IL-7 receptor α chain (CD127), which in a C57BL/6 mouse model of experimental autoimmune encephalomyelitis (EAE) ameliorates disease, demonstrating an important pathogenic function of IL-7. We observed that while the treatment was effective in 100 % of the mice, it was only partially effective in the EAE model in common marmosets (Callithrix jacchus), a small-bodied Neotropical primate. EAE was induced in seven female marmoset twins and treatment with the anti-CD127 mAb or PBS as control was started 21 days after immunization followed by weekly intravenous administration. The anti-CD127 mAb caused functional blockade of IL-7 signaling through its receptor as shown by reduced phosphorylation of STAT5 in lymphocytes upon stimulation with IL-7. Group-wise analysis showed no significant effects on the clinical course and neuropathology. However, paired twin analysis revealed a delayed disease onset in three twins, which were high responders to the immunization. In addition, we observed markedly opposite effects of the antibody on pathological changes in the spinal cord in high versus low responder twins. In conclusion, promising clinical effect of CD127 blockade observed in a standard inbred/SPF mouse EAE model could only be partially replicated in an outbred/non-SPF non-human primate EAE model. Only in high responders to the immunization we found a positive response to the treatment. The mechanism underpinning this dichotomous response will be discussed.
To date, no gene transfer vector has produced prolonged gene expression following a single intravenous injection and then efficiently re-expressed the delivered gene following repeated systemic injection into immunocompetent hosts. To overcome these limitations, a gene therapy regimen using non-replicating EpsteinBarr virus (EBV)-based expression plasmids was developed. One plasmid contains the FR (EBV family of repeats) sequence and the expressed gene. The other encodes Epstein-Barr nuclear antigen 1 (EBNA-1), but lacks FR. Although unable to replicate in mice, intravenous co-injection of EBV-based plasmids in cationic liposome-DNA complexes (CLDCs) substantially prolonged luciferase gene expression. The use of a twovector system limited host exposure to the EBNA-1 gene product. Furthermore, this EBV-based vector system could be intravenously re-injected multiple times into immunocompetent mice without loss of transfection efficiency. Use of this vector system significantly improved the therapeutic efficacy of the biologically important human granulocyte colony-stimulating factor gene. Delivery of the human granulocyte colony-stimulating factor gene in EBV-based plasmids increased circulating white blood counts for at least 2 months following a single CLDC-based intravenous co-injection. Conversely, white blood counts were never elevated following injection of CLDCs lacking EBV-derived elements. Thus, this EBV-based plasmid vector system both markedly prolongs gene expression at therapeutic levels and efficiently and repeatedly re-transfects immunocompetent hosts. These properties of EBV-based plasmid vectors appear to be due, at least in part, to the documented abilities of the EBNA-1 protein both to retain FR-containing DNA intracellularly and within the nucleus and to block anti-EBNA-1 cytotoxic T cell responses.
We demonstrate here that intracerebroventricular or spinal cord (intrathecal) injection of either plasmid DNA alone or cationic liposome: DNA complexes (CLDCs) produces significant levels of expression of both reporter genes and biologically relevant genes in nonparenchymal cells lining both the brain and the spinal cord. Gene expression was identified both within the spinal cord and the brain after intracerebroventricular or intrathecal injection of either CLDCs or plasmid DNA alone. Intracerebroventricular or intrathecal injection of CLDCs containing the beta-galactosidase (beta-Gal) gene produced patchy, widely scattered areas of beta-Gal expression. The chloramphenicol acetyltransferase (CAT) reporter gene product reached peak levels between 24 hr and 1 week postinjection, and was still present at significant levels 3 weeks after a single intracerebroventricular or intrathecal injection. Intrathecal injection of the human granulocyte colony-stimulating factor (G-CSF) gene produced high levels of hG-CSF activity in both the spinal cord and the brain. Intracerebroventricular injection of CLDCs containing the murine nerve growth factor (NGF) gene increased mNGF levels in the hippocampus, a target region for cholinergic neurons in the medial septum, and increased cholinergic neurotransmitter synthetic enzyme choline acetyltransferase (ChAT) activity within the brain, a well-characterized effect of both purified and recombinant NGF protein. These findings indicate that intracerebroventricular or intrathecal injection of CLDCs can produce significant levels of expression of biologically and therapeutically relevant genes within the CNS. Efficient gene transfer into the CNS will facilitate the evaluation of gene function and regulation within the brain and spinal cord. We attempted to transfer and express genes within the brain and spinal cord by direct CNS injection of either DNA alone or CLDCs into the intraventricular and subarachnoid compartments. We show that intracerebroventricular or spinal cord (intrathecal) injection of either plasmid DNA alone or CLDCs produces significant levels of expression of both reporter genes and biologically relevant genes in nonparenchymal cells lining both the brain and the spinal cord. Intrathecal injection of the hG-CSF gene produced high levels of hG-CSF activity in both the spinal cord and the brain. Intracerebroventricular injection of CLDCs containing the murine NGF gene increased mNGF levels in the hippocampus, and increased cholinergic neurotransmitter synthetic enzyme ChAT activity within the brain. Locoregional diffusion of gene products expressed by transfected meningeal lining cells into brain and spinal cord parenchyma could potentially target secreted proteins within brain and spinal cord regions relevant to neuropathological states while limiting peripheral side effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.