The features of ion and electron fishbone instabilities have been investigated during neutral beam injection (NBI) and electron cyclotron resonance heating (ECRH) on HL-2A. Some new phenomena, such as frequency jumps and V-font-style sweeping, have been presented in the paper. Three kinds of i-fishbones, including hybrid sawtoothfishbone (sawbone), run-on fishbone and classical fishbone, have been identified during NBI. During high power (P ECRH > 0.7 MW) ECRH, the experimental results indicate that the e-fishbone frequencies are higher than those during low power ECRH, and are provided with up-and down-chirping behaviours, and sometimes also with V-font-style sweeping. The periodic mode frequency jumps have also been detected by a soft x-ray array. It is possible to correlate these phenomena with the redistribution of energetic electrons.
Density profiles in pedestal region (H-mode) are measured in HL-2A and the characteristics of the density pedestal are described. Cold particle deposition by Supersonic Molecular Beam Injection (SMBI) within the pedestal is verified. ELM mitigation by SMBI into the H-mode pedestal is demonstrated and the relevant physics is elucidated. The sensitivity of the effect to SMBI pressure and duration are studied. Following SMBI, the ELM frequency increases and ELM amplitude decreases for a finite duration period. Increases in ELM frequency of SMBI ELM f / 0 ELM f 2-3.5 are achieved. This experiment argues that the ELM mitigation results from an increase in Page 2 higher frequency fluctuations and transport events in the pedestal, which are caused by SMBI. These inhibit the occurrence of large transport events which span the entire pedestal width. The observed change in the density pedestal profiles and edge particle flux spectrum with and without SMBI supports this interpretation. An analysis of the experiment and a model shows that ELMs can be mitigated by SMBI with shallow particle penetration into the pedestal.
Typical ELMy H-mode discharges have been achieved on the HL-2A tokamak with combined auxiliary heating of NBI and ECRH. The minimum power required is about 1.1 MW at a density of 1.6 × 10 19 m −3 and increases with a decrease in density, almost independent of the launching order of the ECRH and NBI heating. The energy loss by each edge localized mode (ELM) burst is estimated to be lower than 3% of the total stored energy. At a frequency of typically 400 Hz, the energy confinement time is only marginally reduced by the ELMs. The supersonic molecular beam injection fuelling is found to be beneficial for triggering an L-H transition due to less induced recycling and higher fuelling efficiency. The dwell time of the L-H transition is 20-200 ms, and tends to decrease as the power increases. The delay time of the H-L transition is 10-30 ms for most discharges and is comparable to the energy confinement time. The ELMs with a period of 1-3 ms are sustained for more than ten times the energy confinement time with enhanced confinement factor H 89 > 1.5, which tends to decrease with the total heating power. The confinement time in the H-mode discharges increases with plasma current approximately linearly.
He-induced W nanofuzz growth over the W divertor target is one of the main limiting factors affecting the current design and development of fusion reactors. In this paper, based on He reaction rate model in W, we simulate the growth and evolution of He nanobubbles during W nanofuzz formation under fusion-relevant He+ irradiation conditions. Our modeling unveils the existence of He nanobubble-enriched W surface layer (<10 nm), formed due to the He diffusion in W crystal into defect sites. At an elevated temperature, the growth of He bubbles in the W surface layer prevents He atoms diffusing into the deep layer (>10 nm). The formation of W nanofuzz at the surface is attributed to surface bursting of high-density He bubbles with their radius of ~4 nm, and an increase in the surface area of irradiated W. Our findings have been well confirmed by the experimental measurements.
Abstract. Significant experimental advances have been made on HL-2A tokamak along with substantial improvement and development of hardware. The three dimensional spectral structures of the low frequency zonal flow, the geodesic acoustic mode (GAM), and quasi-mode-like low frequency fluctuations have been observed simultaneously for the first time. In addition, the spectral structure of the density fluctuation at GAM frequency is also identified. A spontaneous particle transport barrier has been observed in Ohmic discharges without any external momentum input. The barrier is evidenced by particle perturbation study using modulated SMBI and microwave reflectometry. The non-local transport effect with new features induced by SMBI has been investigated. The e-fishbone instability excited by energetic electrons of non-Maxwellian distribution has been investigated via 10-channel CdTe hard x-ray detector. It is found that the e-fishbone is correlated with the existence of energetic electrons of 30-70 keV. The experiment shows that the suppression of m/n = 2/1 tearing modes can be sustained by ECRH with low modulation frequency of about 10 Hz. Extended confinement improvement is obtained after the mode suppression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.