Resistive switching and conductance quantization are systematically studied in a Ag/poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester/indium-tin oxide sandwich structure. The observed bipolar switching behavior can be attributed to the formation and dissolution of Ag filaments during positive and negative voltage sweeps, respectively. More importantly, conductance quantization with both integer and half integer multiples of single atomic point contact can be realized by slowing down the voltage sweep speed as well as by pulse measurement. The former may reflect the formed Ag filaments with different atomic point contacts, while the latter probably originates from the interaction between the Ag filaments and the elemental hydrogen provided by the organic storage medium. With appropriate current compliances, low resistance states with desired quantized conductance values are successfully achieved, thus showing the potential for ultrahigh density memory applications. Besides, 100 successive switching cycles with densely distributed resistance values of each resistance state and extrapolated retention properties over ten years are also demonstrated.
Through the one-step plasma oxidation of TiN thin films at room temperature (a simple semiconductor technology compatible method), a partly oxidised structure of titanium oxynitride (TiN(x)O(y)) with a TiO(2-x) nanolayer on top has been prepared for non-volatile resistive switching memory devices. The fabricated Pt/TiO(2-x)/TiN(x)O(y)/TiN memory devices demonstrate complementary resistive switching behaviours within an operation voltage of 1 V. The complementary resistive switching behaviours can be explained by redistribution of the oxygen vacancies between the Pt/TiO(2-x) top interface and the TiO(2-x)/TiN(x)O(y) bottom interface in the TiO(2-x) nanolayer. A model concerning the resistive switching mechanism as well as a recover program of a failed device is also proposed. Our work provides a possible cost-efficient solution to suppress the sneak-path problem in nanoscale crossbar memory arrays.
We report the complementary resistive switching (CRS) behaviors in aluminum nitride (AlN)-based memory devices as the promising new material system for large-scale integration of passive crossbar arrays. By utilizing different electrodes (Cu, Pt, and TiN), CRS characteristics are demonstrated in both TiN/AlN/Cu/AlN/TiN electrochemical metallization cells and Pt/AlN/TiN/AlN/Pt ionic resistive switching systems. The instability of Pt/AlN/Cu/AlN/Pt based CRS is explained by the relatively small reset voltage caused by the thermal effects enhanced reset process in the corresponding bipolar resistive switching element. It is concluded that the prerequisite for reliable and stable CRS is that the reset voltage of the bipolar resistive switching element must be much larger than half of the set voltage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.