Rhipicephalus microplus ticks are vectors for multiple pathogens infecting animals and humans. Although the medical importance of R. microplus has been well-recognized and studied in most areas of China, the occurrence of tick-borne Rickettsiales has seldom been investigated in Guizhou Province, Southwest China. In this study, we collected 276 R. microplus ticks from cattle (209 ticks) and goats (67 ticks) in three locations of Guizhou Province. The Rickettsia, Anaplasma, and Ehrlichia were detected by targeting the 16S rRNA gene and were further characterized by amplifying the key genes. One Rickettsia (Ca. Rickettsia jingxinensis), three Ehrlichia (E. canis, E. minasensis, Ehrlichia sp.), and four Anaplasma (A. capra, A. ovis, A. marginale, Ca. Anaplasma boleense) species were detected, and their gltA and groEL genes were recovered. Candidatus Rickettsia jingxinensis, a spotted fever group of Rickettsia, was detected in a high proportion of the tested ticks (88.89%, 100%, and 100% in ticks from the three locations, respectively), suggesting the possibility that animals may be exposed to this type of Rickettsia. All the 16S, gltA, groEL, and ompA sequences of these strains are 100% identical to strains reported in Ngawa, Sichuan Province. E. minasensis, A. marginale, and Candidatus Anaplasma boleense are known to infect livestock such as cattle. The potential effects on local husbandry should be considered. Notably, E. canis, A. ovis, and A. capra have been reported to infect humans. The relatively high positive rates in Qianxinan (20.99%, 9.88%, and 4.94%, respectively) may indicate the potential risk to local populations. Furthermore, the genetic analysis indicated that the E. minasensis strains in this study may represent a variant or recombinant. Our results indicated the extensive diversity of Rickettsiales in R. microplus ticks from Guizhou Province. The possible occurrence of rickettsiosis, ehrlichiosis, and anaplasmosis in humans and domestic animals in this area should be further considered and investigated.
Background The trihelix family of transcription factors plays essential roles in the growth, development, and abiotic stress response of plants. Although several studies have been performed on the trihelix gene family in several dicots and monocots, this gene family is yet to be studied in Chenopodium quinoa (quinoa). Results In this study, 47 C. quinoa trihelix (CqTH) genes were in the quinoa genome. Phylogenetic analysis of the CqTH and trihelix genes from Arabidopsis thaliana and Beta vulgaris revealed that the genes were clustered into five subfamilies: SIP1, GTγ, GT1, GT2, and SH4. Additionally, synteny analysis revealed that the CqTH genes were located on 17 chromosomes, with the exception of chromosomes 8 and 11, and 23 pairs of segmental duplication genes were detected. Furthermore, expression patterns of 10 CqTH genes in different plant tissues and at different developmental stages under abiotic stress and phytohormone treatment were examined. Among the 10 genes, CqTH02, CqTH25, CqTH18, CqTH19, CqTH25, CqTH31, and CqTH36, were highly expressed in unripe achenes 21 d after flowering and in mature achenes compared with other plant tissues. Notably, the 10 CqTH genes were upregulated in UV-treated leaves, whereas CqTH36 was consistently upregulated in the leaves under all abiotic stress conditions. Conclusions The findings of this study suggest that gene duplication could be a major driver of trihelix gene evolution in quinoa. These findings could serve as a basis for future studies on the roles of CqTH transcription factors and present potential genetic markers for breeding stress-resistant and high-yielding quinoa varieties.
IntroductionThe transcription factor WRKY is widespread in the plant kingdom and plays a crucial role in diverse abiotic stress responses in plant species. Tritipyrum, an octoploid derived from an intergeneric cross between Triticum aestivum (AABBDD) and Thinopyrum elongatum (EE), is a valuable germplasm resource for introducing superior traits of Th. elongatum into T. aestivum. The recent release of the complete genome sequences of T. aestivum and Th. elongatum enabled us to investigate the organization and expression profiling of Tritipyrum WRKY genes across the entire genome.ResultsIn this study, 346 WRKY genes, from TtWRKY1 to TtWRKY346, were identified in Tritipyrum. The phylogenetic analysis grouped these genes into three subfamilies (I-III), and members of the same subfamilies shared a conserved motif composition. The 346 TtWRKY genes were dispersed unevenly across 28 chromosomes, with 218 duplicates. Analysis of synteny suggests that the WRKY gene family may have a common ancestor. Expression profiles derived from transcriptome data and qPCR demonstrated that 54 TtWRKY genes exhibited relatively high levels of expression across various salt stresses and recovery treatments. Tel1E01T143800 (TtWRKY256) is extremely sensitive to salt stress and is on the same evolutionary branch as the salt-tolerant A. thaliana genes AtWRKY25 and AtWRKY33. From 'Y1805', the novel AtWRKY25 was cloned. The Pearson correlation analysis identified 181 genes that were positively correlated (R>0.9) with the expression of TtWRKY256, and these genes were mainly enriched in metabolic processes, cellular processes, response to stimulus, biological regulation, and regulation of biological. Subcellular localization and qRT-PCR analysis revealed that TtWRKY256 was located in the nucleus and was highly expressed in roots, stems, and leaves under salt stress.DiscussionThe above results suggest that TtWRKY256 may be associated with salt stress tolerance in plants and may be a valuable alien gene for improving salt tolerance in wheat.
Background Glutathione S-transferase (GST) is an antioxidant enzyme essential for cell protection because of its scavenging of reactive oxygen species accumulated under various stresses. Cold stress studies on the GST gene family have been conducted in several dicotyledonous and monocotyledonous plants, including Arabidopsis, rice, sweet potato, cantaloupe, and pumpkin. However, no relevant studies have been conducted on quinoa to date. Results In the present study, 59 GST (CqGST) genes were identified in the C. quinoa genome, among which 34 were located in the cytoplasm, 20 in the chloroplasts, and five in the ribosomes. Our phylogenetic analysis of CqGST and GST genes from Arabidopsis and rice showed that these genes were clustered into eight subfamilies, namely Tau, Phi, GHR, Zeta, Lambda, EF1B, DHER, and TCHQD. A total of 59 CqGSTs were located on 14 chromosomes, and none were located on chromosomes 00, 4, 9, 13, and 15. Eleven pairs of tandem-duplicated genes and 12 pairs of segmentally duplicated genes were identified in the CqGST gene family. The promoter region of each CqGST contained at least one cis-element associated with adversity. We selected 16 representative genes for fluorescence quantitative RT-PCR to verify gene expression and found that most of the CqGST genes were highly expressed in the roots and recovered for 3 h after different cold treatment times, indicating that the GST family plays an important role in quinoa cold stress. Conclusions In the present study, 59 GST genes were identified in quinoa, and gene duplication events were found to be the main drivers of GST gene family evolution in this species. Our results provide a basis for further studies on the function of GST genes in quinoa as well as a research basis for breeding quinoa in high-altitude cold regions, indicating the candidate genes for enhancing quinoa yield.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.